IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1968

Propagation characteristics of interfacial ripples at the polarized aqueous solution-mercury interface

Gordon Paul Bierwagen Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Physical Chemistry Commons</u>

Recommended Citation

Bierwagen, Gordon Paul, "Propagation characteristics of interfacial ripples at the polarized aqueous solution-mercury interface " (1968). *Retrospective Theses and Dissertations.* 3716. https://lib.dr.iastate.edu/rtd/3716

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

This dissertation has been microfilmed exactly as received

1

69-4214

..

BIERWAGEN, Gordon Paul, 1943-PROPAGATION CHARACTERISTICS OF INTER-FACIAL RIPPLES AT THE POLARIZED AQUEOUS SOLUTION-MERCURY INTERFACE.

Iowa State University, Ph.D., 1968 Chemistry, physical

University Microfilms, Inc., Ann Arbor, Michigan

PROPAGATION CHARACTERISTICS OF INTERFACIAL RIPPLES AT THE POLARIZED AQUEOUS SOLUTION-MERCURY INTERFACE

by

Gordon Paul Bierwagen

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Deam of Graduatte College

Iowa State University Ames, Iowa

Please Note: This is not original copy. Figure pages have small and indistinct print.

University Microfilms

.

TABLE OF CONTENTS

	Page
DEDICATION	iii
INTRODUCTION	1
THEORY OF INTERFACIAL RIPPLES	3
THE MERCURY-SOLUTION INTERFACE	19
EXPERIMENTAL SECTION	29
CALCULATION SECTION	47
RESULTS	53
DISCUSSION OF RESULTS	79
CONCLUSIONS	92
SUMMARY	95
LITERATURE CITED	98
ACKNOWLEDGMENTS	102
APPENDIX A	103
APPENDIX B	107
APPENDIX C	120
APPENDIX D	174

DEDICATION

To my wife, Diane, whose help and encouragement made this work possible

INTRODUCTION

Liquid-liquid interfaces have long interested the chemist, physicist, and engineer. Much of modern surface science (1, 8, 40) has centered about the consideration of the surface of separation between two immiscible liquids and its properties. However, the surface scientist has considered mainly static interfaces, equilibrium or pseudoequilibrium systems which lend themselves easily to study. The properties of interfaces in motion have been studied mainly by chemical engineers, and then usually from an empirical point of view. Thus a method for studying the dynamic properties of liquid-liquid interfaces which has a firm theoretical foundation would fill a gap in the present knowledge of surface scientists.

The use of interfacial ripples presents itself as just such a method. The basic theory is present in the theoretical studies of capillary ripples (25, 45), and the experimental techniques also have a basis in capillary ripple experimental procedures (45-47).

The development of a method for studying liquid-liquid interfaces obviously necessitates the choice of an interfacial system for experimentation. A liquid-liquid interface which has previously received much attention (1, 7, 8, 10, 11, 15, 20, 23, 26, 27, 30-33, 51-57), and is of interest because

of its unique properties is the interface between an aqueous electrolyte solution containing a surfactant and mercury. This system also has a large density difference between the two phases and the properties of the interface can be changed by electrical polarization. Thus the solutionmercury interface is one which would lend itself well to interfacial ripple studies.

Objectives of Research

The objectives of this research are fourfold, namely:

- To develop the theory of interfacial ripples based on the hydrodynamic methods used for capillary ripples.
- 2. To develop experimental methods for studying the aqueous solution-mercury interface.
- 3. To demonstrate the applicability of the theory by comparison to experiment.
- 4. To study various surfactant-electrolyte systems and interpret their behavior.

THEORY OF INTERFACIAL RIPPLES Basic Theory

Surface waves have long intrigued both the general public and scientific community. Theoretical studies of these waves have centered mainly about capillary ripples¹, or waves at the air-liquid interface (6, 8, 12, 13, 18, 19, 25, 38-40, 45, 59-61). Kussakov (34) extended Levich's work on capillary ripples to the interfacial case but neglected the case of an interfacial film. Milne-Thompson (49) considered interfacial ripples, briefly, using inviscid flow theory (no energy dissipation).

Our system may be described mathematically as follows:

- An upper and a lower liquid having finite viscosity and density, and being of infinite depth.
- 2. The liquids are Newtonian and incompressible.
- 3. The undisturbed interface between the two liquids is a plane described in a Cartesian coordinate system as the plane y=0, with the positive ydirection being upward.
- 4. The waves are propagated from an infinitely long line source which coincides with the z-axis, and the direction of propagation is in the positive x-direction.

¹When the term "capillary ripples" is used, the interface is the air-liquid interface; when "interfacial ripples" is used, a liquid-liquid interface is present.

5. The waves are sinusoidal of angular frequency ω .

According to the theory of fluid mechanics (2, 37), the equations describing viscous fluid motion are the following:

$$\vec{\nabla} \cdot \vec{v} = 0$$
 (Equation of continuity), (1)

and

$$\rho \left[\frac{\partial \vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}} \cdot \vec{\nabla}) \vec{\mathbf{v}} \right] = -\vec{\nabla} p + \mu \nabla^2 \vec{\mathbf{v}} - \rho \vec{\mathbf{g}} , \qquad (2)$$

(Navier-Stokes equation)

where

$$\vec{v} = \text{vector particle velocity} = v_x \vec{1} + v_y \vec{j} ,$$

$$\vec{\nabla} = \text{gradient operator} = \vec{1}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z} ,$$

$$\rho = \text{density of fluid} ,$$

$$\vec{g} = \text{vector acceleration of gravity} ,$$

$$p = \text{pressure function} ,$$

$$\mu = \text{viscosity coefficient} ,$$

$$q^2 = \text{Laplacian Operator} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} .$$

We must now use these equations to find a solution appropriate to our system: plane waves generated at the interface between two viscous liquids.

If we have waves of amplitude a and wavelength λ for which to ratio $a/\lambda << 1$, we can linearize the Navier-Stokes equation (25, 38-40, 45) to the following form:

$$\rho \frac{\partial \vec{v}}{\partial t} = -\vec{\nabla} (\Delta p) + \mu \nabla^2 \vec{v} , \qquad (3)$$

where $\Delta p = p + \rho g y$.

Following the theoretical treatment of Hansen and Mann (24, 45), we have a stream and potential function describing the flow in each liquid. We can write

$$\mathbf{v}_{\mathbf{x}} = -\frac{\partial \Phi}{\partial \mathbf{x}} - \frac{\partial \Psi}{\partial \mathbf{y}}$$
(5)

and

$$\mathbf{v}_{\mathbf{y}} = -\frac{\partial \Phi}{\partial \mathbf{y}} + \frac{\partial \Psi}{\partial \mathbf{x}} , \qquad (6)$$

where Ψ = stream function and Φ = potential function. Letting the ripples be propagated in the +x direction, we have for the lower phase

$$\Phi = A e^{\kappa y} e^{i(\kappa x - \omega t)}$$
(7)

and

$$\Psi = Be^{my} e^{i(\kappa x - \omega t)}, \qquad (8)$$

where

$$\kappa = \text{complex wave number} = k + i\alpha(\text{cm}^{-1}),$$

$$k = \text{wave number} = 2\pi/\lambda \text{ (cm}^{-1}),$$

$$\lambda = \text{wavelength of ripples (cm)},$$

$$\alpha = \text{damping coefficient (cm}^{-1}),$$

$$\omega = \text{angular frequency} = 2\pi\nu,$$

$$\nu = \text{ripple frequency (Hz.)},$$

and

$$m^2 = \kappa^2 - i\rho\omega/\mu.$$

(From now on, unprimed terms refer to the lower phase, primed terms refer to the upper phase.) Also, the pressure for the lower phase can be written as

$$\Delta p = i \rho A \omega e^{\kappa y} e^{i(\kappa x - \omega t)}.$$
(8)

Likewise, for the upper phase we can write

$$\Phi' = A'e^{-\kappa Y} e^{i(\kappa x - \omega t)}, \qquad (9)$$

$$\Psi' = B'e^{-m'Y}e^{i(\kappa x - \omega t)}, \qquad (10)$$

and

$$\Delta p' = i\rho' A' \omega e^{-\kappa y} e^{i(\kappa x - \omega t)}, \qquad (11)$$

where

$$m'^2 = \kappa^2 - \frac{i\rho'\omega}{u'}$$
.

Boundary conditions

We must now choose the boundary conditions appropriate for our system. Two boundary conditions are given by the fact that the velocity vectors of the two phases are equal at the interface. Expressing this mathematically, we have

$$(v_x)_{y \to 0} - = (v_x')_{y \to 0} +$$
 (12)

or

$$\left(\frac{-\partial \Phi}{\partial x} - \frac{\partial \Psi}{\partial y}\right)_{y \neq 0} - = \left(\frac{-\partial \Phi'}{\partial x} - \frac{\partial \Psi'}{\partial y}\right)_{y \neq 0} + \qquad (12a)$$

and

$$(v_{y})_{y \to 0} - = (v_{y}')_{y \to 0} +$$
 (13)

or

$$\left(\frac{-\partial\phi}{\partial y} + \frac{\partial\Psi}{\partial x}\right)_{y \neq 0^{-}} = \left(\frac{-\partial\phi'}{\partial y} + \frac{\partial\Psi'}{\partial x}\right)_{y \neq 0^{+}} .$$
 (13a)

The stream and potential functions introduce 4 unknown coefficients A, A', B, and B'; equations 12a and 13a provide two relations between them. Two additional relations are furnished by the surface stress boundary conditions.

For a viscous, incompressible fluid, the stress tensor may be written (2, 37, 40)

$$\sigma_{ij} = -p\delta_{ij} + \mu \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_i}{\partial x_i}\right)$$
(14)

where i, j and x_i , x_j take on values of x, y, z and δ_{ij} is the Kroeneker delta, $\delta_{ij} = 0$ if $i \neq j$, $\delta_{ij} = 1$ if i = j. This expression furnishes the stresses in the bulk phases. The difference between these stresses at the interface must be balanced by an interfacial stress. Let

 $\zeta = \int (v_y)_{y \neq 0^+} dt$ and $\xi = \int (v_x)_{y \neq 0^+} dt$ be the normal and tangential displacements of the surface, respectively. Then for the normal stress balance we can write (24)

$$(\sigma_{yy})_{y \neq 0} - (\sigma_{yy}')_{y \neq 0} = \sigma_{yy} \text{ (interface)}, \quad (15)$$

or rewriting we have

$$(-\Delta p + 2\mu \frac{\partial v}{\partial y})_{y \neq 0} - (\Delta p' + 2\mu' \frac{\partial v}{\partial y})_{y \neq 0} = \gamma \frac{\partial^2 \zeta}{\partial x^2} , \quad (15a)$$

where γ = interfacial tension. For the tangential stress balance we write (24)

$$(\sigma_{xy})_{y \neq 0^{-}} - (\sigma_{xy}')_{y \neq 0^{+}} = \sigma_{xy} \text{ (interface)}$$
(16)

$$\left[2\mu\left(\frac{\partial v_{y}}{\partial x} + \frac{\partial v_{x}}{\partial y}\right)\right]_{y \neq 0} - \left[2\mu'\left(\frac{\partial y'}{\partial x} + \frac{\partial v_{x}'}{\partial y}\right)\right]_{y \neq 0} + = E \frac{\partial^{2}\xi}{\partial x^{2}}$$
(16a)

where E = interfacial elastic film modulus, which for the general case is a complex number. Equation 15 may be thought of as a generalization of the Young-Laplace equation (1)

$$\Delta p = (\frac{1}{R_1} + \frac{1}{R_2})$$
 (17)

where Δp (the difference in pressure across an interface), is replaced by $\Delta(\sigma_{yy})$, and for the small curvatures of the waveform for the interfacial ripples $\frac{\partial^2 \xi}{\partial x^2} \approx (\frac{1}{R_1})$, where for plane waves $R_2 \rightarrow \infty$. Equation 16 is just a force balance stating that the stress due to interface stretching must be exactly balanced by stresses due to motion of the adjacent bulk phases. In the simplest case the stress due to interface stretching is an interfacial tension gradient and if the local surface tension is in equilibrium with local surface excess (Γ), with no relaxation processes occurring at the interface, we can write

$$E \frac{\partial^2 \xi}{\partial x^2} = \left(\frac{\partial \gamma}{\partial x}\right) = \left(\frac{-\partial \gamma}{\partial \ln \Gamma}\right) \left(\frac{-\partial \ln \Gamma}{\partial x}\right), \qquad (18)$$

with
$$E = -\frac{\partial \gamma}{\partial \ln \Gamma}$$
, $\frac{\partial^2 \xi}{\partial x^2} = -\frac{\partial \ln \Gamma}{\partial x}$.

or

Diffusion and surface transfer

If we assume the surfactant providing the local surface excess Γ is soluble, we must consider the diffusional process which will occur due to the displacement of the interface by the waveform. Let Γ_0 = equilibrium surface excess, $\Gamma = \Gamma_0 + \Delta\Gamma$ = local surface excess, C_0 = bulk equilibrium concentration in lower phase, $C = C_0 + \Delta C$ = local concentration, C'_0 = bulk equilibrium concentration in upper phase, and $C' = C'_0 + \Delta C'$. As in Hansen and Mann (25), we have

$$\Delta C = H e^{n y} e^{i (\kappa x - \omega t)}$$
(19)

where n is the positive root of $n^2 = \kappa^2 - \frac{i\omega}{D}$ with D = diffusion coefficient for lower phase. Similarly, for the upper phase we have

$$\Delta C' = H'e^{-n'Y} e^{i(\kappa x - \omega t)}, \qquad (20)$$

with n' the positive root of $(n')^2 = \kappa^2 - i\omega/D'$, where D' = diffusion coefficient for the upper phase. Assuming a Henry's law distribution between phases at equilibrium, and also assuming local surface equilibrium between phases, we have

$$C'_{0} = KC_{0}$$
, and (21)

$$(\Delta C')_{y \to 0^+} = K(\Delta C)_{y \to 0^-}$$
(22)

which implies

H' = KH(23)

where K is the Henry's law distribution coefficient. Further following Hansen and Mann (25), we have

$$\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}C^{+}}\right)_{C_{0}}\left(\frac{\partial\Lambda C^{+}}{\partial\tau}\right)_{Y \neq 0^{+}} + \Gamma_{0}\left(\frac{\partial\nu_{x}}{\partialx}\right)_{Y \neq 0^{+}} + D\left(\frac{\partial\Lambda C}{\partialy}\right)_{Y \neq 0^{-}} - D\left(\frac{\partial\Lambda C^{+}}{\partialY}\right)_{Y \neq 0^{+}} = 0$$
(24)

This leads immediately to the following relationship:

$$\Delta \Gamma = -\Gamma_{0} \left\{ \frac{\kappa/\omega \left(-m'B'+i\kappa A'\right) e^{i(\kappa x-\omega t)}}{1 + \frac{i}{\omega} \left(\frac{nD}{K}+n'D'\right) \left(\frac{dC'}{d\Gamma}\right)} \right\}$$
(25)

Now we can write an expression for E in terms of diffusion surface transfer. From 18 we have $E = \left(\frac{-\partial \gamma}{\partial \ln \Gamma}\right) \left(\frac{\partial \ln \Gamma}{\partial x}\right)$, which, substituting from (25) be comes

$$E = -\left(\frac{\partial \gamma}{\partial \ln \Gamma}\right) \left[1 + \frac{i}{\omega}\left(\frac{nD}{K} + n^*D^*\right)\left(\frac{dC'}{d\Gamma}\right)_{C_0}\right]^{-1}$$
(26)

Solution of system of equations using boundary conditions

Equations 12, 13, 15 and 16 offer a system of four linear homogeneous equations in four unknowns, A, A', B, and B', which is apparent if they are written in the following

form: Equation

$$-(i\kappa A+mB) = -(i\kappa A'-m'B') \quad (v_x = v_x' \text{ at } y=0) \quad (27)$$

$$-A + iB = A' + iB' \quad (v_y = v_y' \text{ at } y=0) \quad (28)$$

$$[i\rho\omega A -2\mu (A\kappa^2 - im\kappa B)] = [i\omega\rho'A' - 2\mu' (A'\kappa^2 + i\kappa mB'] (normal \text{ stress})$$

$$+ \frac{\kappa^3 \gamma}{\omega} (iA+B) \quad (29)$$

$$-\mu[B(\kappa^{2}+m^{2})+2i\kappa^{2}A] = -\mu'[B'(\kappa^{2}+m'^{2})-2i\kappa^{2}A]$$

 $+\frac{\kappa^2}{\omega}$ E(mB+i κ A) (Tangential Stress). (30)

For a non-trivial solution, according to Cramer's Rule, the determinant of the coefficients of the equations must be zero. Then we have

$$\begin{vmatrix} i\omega\rho - 2\mu\kappa^{2} - \frac{i\kappa^{3}\gamma}{\omega} \end{bmatrix} \begin{bmatrix} i\omega\rho' + 2\kappa^{2}\mu' \end{bmatrix} \begin{bmatrix} 2i\kappa\mu m - \frac{\gamma\kappa^{3}}{\omega} \end{bmatrix} \begin{bmatrix} 2i\kappa\mu'm' \end{bmatrix} \\ \begin{bmatrix} -2i\kappa^{2}\mu - \frac{\kappa^{3}\gamma u_{2}}{\omega} \end{bmatrix} \begin{bmatrix} -2i\kappa^{2}\mu \end{bmatrix} \begin{bmatrix} -\mu(m^{2}+\kappa^{2}) - \frac{i\kappa^{2}mu_{2}}{\omega} \end{bmatrix} \begin{bmatrix} \mu'(m'^{2}+\kappa^{2}) \end{bmatrix} \\ \begin{bmatrix} i\kappa \end{bmatrix} \begin{bmatrix} -i\kappa \end{bmatrix} \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} m' \end{bmatrix} \begin{bmatrix} m' \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -i\kappa \end{bmatrix} \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} m' \end{bmatrix}$$

where $u_2 = E/\gamma$. One can reduce this determinant to a two-by-two determinant.

$$\left\{i\left[\frac{(\rho+\rho^{*})\omega^{2}}{\gamma\kappa^{3}}-1\right]-\frac{2\omega}{\gamma\kappa}\left(\mu+\mu^{*}\frac{m^{*}}{\kappa}\right)\right\}\left\{\left[\frac{(\rho+\rho^{*})\omega^{2}}{\gamma\kappa^{3}}-1\right]\right.$$
$$\left.+\frac{i\omega}{\gamma\kappa}\left[\left(\mu+\mu\frac{m^{*}}{\kappa}\right)+\left(\mu\frac{m}{\kappa}+\mu^{*}\right)\right]\right\}\right\}$$
$$\left[u_{2}-\frac{2i\omega}{\gamma\kappa}\left(\mu+\mu^{*}\frac{m^{*}}{\kappa}\right)\right]\left[\frac{\omega}{\gamma\kappa}\left\{\left(\frac{\mu}{\kappa}+\mu^{*}\right)-\left(\mu+\frac{\mu^{*}m^{*}}{\kappa}\right)\right]\right.$$
$$(32)$$

This determinant can be expanded in different ways. Let us first use a method analogous to the methods of Hansen and Mann (24), which reduces 32 to

$$\frac{(\rho + \rho')\omega^2}{\gamma \kappa^3} - 1 = -i \left[\frac{u_2(u_3 + u_4) - 4iu_3 u_4}{u_2 - i(u_3 + u_4)} \right] , \qquad (33)$$

in which

$$u_3 = \frac{\omega}{\gamma\kappa}(\mu + \frac{\mu'm'}{\kappa})$$
, and $u_4 = \frac{\omega}{\gamma\kappa}(\frac{\mu m}{\kappa} + \mu')$.

Equation 33 is complex, implying two real equations. The right side of equation 33 and α , the imaginary part of κ , disappear for the case of an inviscid fluid, reducing equation 33 to

$$\omega^2 \frac{(\rho + \rho')}{\gamma \kappa^3} = 1, \qquad (34)$$

a result given by Milne-Thompson (49).

Limiting behavior of Yl and Y2

Let us now consider equation 33 in terms of the limiting cases of surface behavior. Consider first a non-elastic film, or $u_2 = E/\gamma = 0$. This gives

$$\lim_{u_2 \to 0} \left\{ \frac{(\rho + \rho')\omega^2}{\gamma \kappa^3} - 1 \right\} = -4i/(\frac{1}{u_3} + \frac{1}{u_4})$$
(35)

In characteristic experiments $\alpha << k$ which implies $\frac{\alpha}{k} <<1$, or $\kappa^3 = (k+i\alpha)^3 \approx k^3 (1+\frac{3i\alpha}{k})$ and $\frac{\mu'k^2}{\rho'\omega}$ and $\frac{\mu k^2}{\rho\omega}$ are about 10^{-2} .

Let us define two further dimensionless variables, Yl = $(\rho + \rho') \omega^2 / \gamma k^3$ and Y2 = α/k . Following the definitions of m', and m we can write,

$$\frac{m'}{\kappa} = e^{-\frac{\pi i}{4}} \left(\frac{\rho'\omega}{\mu\kappa^2}\right)^{\frac{1}{2}} (1+i \frac{\mu'\kappa^2}{\rho'\omega})^{\frac{1}{2}} \simeq e^{-\pi i/4} \left(\frac{\rho'\omega}{\mu'\kappa^2}\right)^{\frac{1}{2}}$$
(36)

and

$$\frac{m}{\kappa} = e^{-\frac{\pi i}{4}} \left(\frac{\rho\omega}{\mu\kappa^2}\right)^{\frac{1}{2}} \left(1 + \frac{i\mu\kappa^2}{\rho\omega}\right)^{\frac{1}{2}} = e^{-\frac{\pi i}{4}} \left(\frac{\rho\omega}{\mu\kappa^2}\right)^{\frac{1}{2}} . \quad (37)$$

Multiplying equation 34 by $\left(\frac{\kappa}{k}\right)^3$ (approximately 1+3iY2), and using 36 and 37 we have

$$\lim_{\substack{u_{2} \neq 0}} Y_{1}-1-3iY_{2} = \frac{\pi i}{4} \frac{\pi i}{(1+e^{\frac{\pi i}{4}} \frac{\mu k}{\sqrt{\mu'\rho'\omega}})(1+e^{\frac{\pi i}{4}} \frac{\mu' k}{\sqrt{\omega\rho\mu}})}{(1+e^{\frac{\pi i}{4}} \frac{\mu' k}{\sqrt{\omega\rho\mu}})(1+e^{\frac{\pi i}{4} \frac{\mu' k}{\sqrt{\omega\rho\mu}}})}$$
(38)
$$\gamma k^{2} [\frac{1}{\sqrt{\rho\mu}} + \frac{1}{\sqrt{\rho'\mu'}}](1+e^{\frac{\pi i}{4} \frac{(\mu+\mu')k}{\sqrt{\omega\rho\mu} + \sqrt{\omega\rho'\mu'}}})$$

Equating the real and imaginary portions of 38, the following equations result, with terms of order $(\frac{\mu k^2}{\rho \omega})$ ignored as small:

$$\lim_{u_{2} \to 0} Y_{1} = 1 - \frac{(2\omega)^{\frac{3}{2}}}{\gamma k^{2} \left[\frac{1}{\sqrt{\rho \mu}} + \frac{1}{\sqrt{\rho^{*} \mu^{*}}}\right]}$$
(39)

and

$$\lim_{\substack{u_{2} \to 0 \\ u_{2} \to 0}} Y_{2} = \frac{(2\omega)^{\frac{3}{2}}}{3\gamma k^{2} \left[\frac{1}{\sqrt{\rho\mu}} + \frac{1}{\sqrt{\rho^{*}\mu^{*}}}\right]} \left\{ 1 + \left(\frac{2}{\omega}\right)^{\frac{1}{2}} k \left[\frac{\mu}{\sqrt{\rho^{*}\mu^{*}}} + \frac{\mu^{*}}{\sqrt{\rho\mu}} - \frac{(\mu + \mu^{*})}{\sqrt{\rho\mu}} \sqrt{\rho^{*}\mu^{*}}\right] \right\} .$$

$$(40)$$

The other limiting case of surface behavior is an infinitely elastic film, which modifies equation 33 to give $\lim_{u_2 \to \infty} \left[\frac{(\rho + \rho') \omega^2}{\gamma \kappa^3} - 1 \right] = i(u_3 + u_4).$ (41) Using similar approximation procedures, we obtain

$$\lim_{u_{2} \to \infty} \Upsilon = 1 - \frac{\omega^{\frac{3}{2}}}{\gamma k^{2} \sqrt{2}} \left(\sqrt{\rho \mu} + \sqrt{\rho^{\dagger} \mu^{\dagger}} \right)$$
(42)

and

$$\lim_{u_{2} \to \infty} Y_{2} = \frac{\omega^{3}}{3\sqrt{2}\gamma k^{2}} \left[\sqrt{\rho \mu} + \sqrt{\rho^{*} \mu^{*}} + k\sqrt{2/\omega} (\mu + \mu^{*}) \right].$$
(43)

Other solution forms

Let us now reconsider our expansion of the determinant in 29. Expanding this equation in the form of a power series¹ in κ (the complex wave number, k+i α) in which the coefficients have a weak dependence on κ , we have

$$\sum_{i=0}^{5} B_{i} \kappa^{i} = 0, \qquad (44)$$

in which

 $B_{0} = [-i\omega(\rho + \rho')(\mu m + \mu'm')],$ $B_{1} = [4\mu\mu'mm' - i\omega(\rho + \rho')(\mu + \mu')],$ $B_{2} = [4(\mu^{2}m + \mu'^{2}m') + E(\rho + \rho')],$ $B_{3} = [\frac{i(\gamma + E)}{\omega}(\mu'm' + \mu m) + 4\mu\mu'],$ $B_{4} = [\frac{i(\gamma + E)}{\omega}(\mu + \mu')],$

and

$$B_5 = -\frac{\gamma E}{\omega^2}$$

This can be solved for E to give the following equation:

¹J. Mann, unpublished results, Department of Chemistry, University of Hawaii, Honolulu, Hawaii, private communication, 1967.

$$E = -\frac{1}{\kappa^2} \left(\frac{A_4 \kappa^4 + A_3 \kappa^3 + A_2 \kappa^2 + A_1 \kappa + A_0}{C_3 \kappa^3 + C_2 \kappa^2 + C_1 \kappa + C_0} \right)$$
(45)

1

with the coefficients Ai and Ci defined as follows:

$$\begin{split} &\Lambda_{0} = -i\omega (\rho + \rho') (\mu m + \mu' m'), \\ &\Lambda_{1} = [4\mu\mu' m m' - i\omega (\mu + \mu') (\rho + \rho')] \\ &\Lambda_{2} = 4 (\mu^{2}m + \mu'^{2}m'), \\ &\Lambda_{3} = [4\mu\mu' + \frac{i\gamma}{\omega}(\mu' m' + \mu m)], \\ &\Lambda_{4} = \frac{i\gamma}{\omega}(\mu + \mu'), \\ &\Lambda_{4} = \frac{i\gamma}{\omega}(\mu + \mu'), \\ &\Lambda_{1} = \frac{i}{\omega}(\mu' m' + \mu m), \\ &\Lambda_{2} = \frac{i}{\omega}(\mu + \mu'), \end{split}$$

and

$$C_3 = -\gamma/\omega^2$$
.

This formula involves no approximations, and covers the entire range of E.

Let us consider equation 44 for the case $E \rightarrow 0$, and solve the equation for γ . This leads to the following formula:

$$\gamma (E=0) = \frac{-(B_0 + B_1 \kappa + B_2 \kappa^2) - 4\mu\mu^* \kappa^3}{D_4 \kappa^4 + D_3 \kappa^3} , \qquad (47)$$

where the Bi are defined as above,

$$D_3 = \frac{i}{\omega}(\mu m + \mu' m')$$
, and $D_4 = \frac{i}{\omega}(\mu + \mu')$.

Theory of Im(E)

In Hansen and Mann (25), a model for surface viscoelastic properties is proposed which suggests, as mentioned above, that the real component of E is the Gibbs' elastic modulus, with a correction for diffusion which adds a small imaginary component. Also, a surface relaxation parameter, k_v , is provided to account for an arbitrary imaginary component of E. The contribution of this term including diffusion may be written as

$$E = (E_{Gibbs} + i E_{Imag}) / (Diffusion correction)$$

where $E_{Imag} = -\omega k_v$. (48)

This model indicates there is a phase lag in the response of the surface to the imposed stress of the wave propagation. J. Mann ¹ has further proposed that the identification of $k_{\rm w}$ as

 $k_v = \mu_s$, where $\mu_s = surface shear viscosity$, (49) holds true when relaxation phenomena (chemical reactions, surface reorientation) are not occurring at the surface,

¹J. Mann, <u>op</u>. <u>cit</u>., private communication, 1967.

are occurring with a relaxation time $\tau << 1/\omega$.

If we consider an interface with a surfactant present, we have two contributions to our interfacial shear viscosity, one from the pure interface and one due to our surfactant. For bulk phases, two schemes have been proposed for the viscosity of a mixture (17). They are

$$\frac{1}{\mu_{\text{Total}}} = \frac{x_1}{\mu_1} + \frac{x_2}{\mu_2} \text{ where } x_i = \text{mole fraction,}$$
(50)

and

$$\ln \mu_{\text{Total}} = x_1 \ln \mu_1 + x_2 \ln \mu_2 .$$
 (51)

In analogy, we may write for our surface viscosities

$$\frac{1}{\mu_{s}} = \frac{\theta}{\mu_{s}^{s}} + \frac{(1-\theta)}{\mu_{pure}^{s}}$$
(52)

where $0 = \text{surface coverage} = \Gamma/\Gamma_{\text{max}}$, and

$$\ln(\mu_{s}) = \ln(\mu^{s}_{surfactant}) + (1 - 0) \ln(\mu^{s}_{pure}).$$
 (53)

The authors of the above reference further suggest that the calculation based on the logarithmic terms has a firmer theoretical foundation, and thus equation 53 was later in-corporated in our model to generate E values.

Intermediate surface behavior

We have considered the limiting cases (u_2^{+0},∞) of surface behavior in some detail, since the formulae readily simplify for these two extremes of surface behavior. Statements concerning the intermediate range of E are more difficult to make due to the complexity of the equations involved. It has been shown for the air-water interface, both theoretically (25) and experimentally (5, 43, 44) that there exist clearly defined maxima in Y2 and Y1 for intermediate values of u_2 , i.e. that Y2 and Y1 exhibit maxima for some Γ , such that $0 < \Gamma < \Gamma_{max}$. For liquid-liquid systems, these maxima are not so clearly defined, theoretically or experimentally (4). The sharpness, or difference of the maxima from the other values depends on the viscosity and density differences and seems to decrease as these decrease.

Another consideration appears of interest concerning Y1 and Y2 behavior at intermediate $u_2(=\frac{F}{\gamma})$ values. In Hansen and Mann (25), u_2 is written in the polar form for a complex number, $u_2 = |u_2| e^{i\Theta_2}$, where $\Theta_2 = \tan^{-1} \frac{\operatorname{Re}(u_2)}{\operatorname{Im}(u_2)}$ and

 $|u_2| = \sqrt{\operatorname{Re}(u_2)^2 + \operatorname{Im}(u_2)^2}$. Predictions for Yl and Y2 are made for a continuous range of $|u_2|$ values at discreet and widely separated θ_2 values. Figures 1 and 2 of (24) show that as 0 goes from $0 \rightarrow -90^\circ$ (physically a phase lag caused by a large k_v value) the maxima diminish and flatten out. This could be the case for interfacial ripples and not for capillary ripples. It would appear from these plots that the sharpness of the Yl and Y2 maxima depends on the value of θ_2 and θ_2 in turn depends on the relaxation parameter k_v . If $\omega k_v \geq E$, the maxima are not clearly interpretable in relation to other values.

THE MERCURY-SOLUTION INTERFACE

Introduction

The interface between electrolyte solutions and mercury has long been investigated by chemists and physicists (1, 7, 8, 10, 11, 15, 20, 23, 25, 27, 30, 32, 33, 40, 41, 51-57). Excellent reviews are available summarizing these investigations (10, 20). The following simple treatment of the theory of this interface will suffice for a discussion of some of the unique interfacial ripple propagation characteristics to be expected from it.

Basic formulation (Ideally polarizable interface) For the mercury-electroyte solution interface at constant temperature, we may write the Gibb's adsorption theorem in the following form (10):

$$-d\gamma = QdV + \sum_{i} \Gamma_{i} d\mu_{i}, \qquad (54)$$

where Q = surface charge density,

V = polarization potential,

 $\Gamma_i = \text{surface excess of i}^{\text{th}} \text{ component},$

and μ_i = chemical potential of ith component. It follows from this equation that

$$\Omega = -\left(\frac{\partial Y}{\partial V}\right)_{P, \mathcal{T}, \mu_{i}}$$
(55)

which is the Lippmann equation (41), the basis of the theory of electrocapillarity. Further differentiation with respect to the polarization potential yields

$$C = -\left(\frac{\partial^{2} \gamma}{\partial v^{2}}\right) = \left(\frac{\partial Q}{\partial V}\right) \text{ where } C = \text{differential surface capacitance.}$$
(56)

An electrocapillary curve, that is a plot of γ vs. V, has been shown experimentally to have the general shape of a parabola. This is especially true in the absence of organic surfactants or specifically adsorbed ions. The apex of this approximate parabola is called the electrocapillary maximum, and since at this point the slope is zero, the surface charge is zero. This point of zero charge has a potential which is dependent upon the electrolyte and its concentration, and upon any surfactant present and its concentration. It is common practice to refer the polarization potentials (measured with respect to a given reference electrode) to the potential of zero charge.

Consider now the simplest case, where C, the differential capacitance, is a constant. This implies

$$\Omega(V) = \int_{V}^{V} CdV = C(V-V_{ecm}) \text{ where } V_{ecm} = \text{potential at} \\ \text{electrocapillary} \\ \text{maximum}$$
(57)

and

$$\gamma(V) = \gamma_{ecm} - \int_{V_{ecm}}^{V} \Omega dV, \qquad (58)$$

or

$$\gamma(V) = \gamma_{ecm} - \frac{1}{2}C(V - V_{ecm})^2.$$
 (58a)

Now we have a simple model for the surface tension behavior during changes in polarization. This simple model is at best approximate for a system in which no adsorption occurs, but may be suitable for treatment of the zero elasticity limiting behavior of interfacial ripples (where again surfactant is absent).

Adsorption at the aqueous solution-mercury interface has been shown to be potential dependent (10, 11, 20, 23, 26, 27, 30, 32). This implies that the surface coverage and elastic modulus will change with the polarization of the interface.

The adsorption of surfactants at the mercury-solution interface at the point of zero charge (the ECM), is similar to the behavior of these materials at the other interfaces in that as concentration of adsorbate increases, Γ goes from 0 to Γ_{max} and then further addition of adsorbate will not increase Γ . The superposition of electrical effects on the adsorption gives this interface its unique properties. As the electric field at the interface increases to either side of the ECM, this region will fill preferentially with material of high dielectric constant (26, 27). As the dielectric constant of water is greater than that of the organic adsorbates, it will displace these from the interface as the field strength increases. Further field effects may be due to ions and to the polarizabilities of the materials

near the interface.

Simplified Frumkin model for interfacial behavior

Various isotherms have been proposed to account for the behavior of organic adsorbates at the mercury-electrolyte solution interface (10). Consider a regular localized monolayer with no specific adsorption sites and nearest neighbors. If the pair interaction energy between surfactant molecules is W, we can write

$$\frac{\Theta}{1-\Theta} = B_0 C e^{-\frac{ZW}{RT}\Theta}, \qquad (59)$$

where $\Theta = \frac{1}{\Gamma_m}$ = surface coverage, or in a different form

$$\frac{\Theta}{1-\Theta} = B_0 C e^{2\beta\Theta}, \qquad (60)$$

where B_0 and β are now constant's characteristic of a given adsorbate, β a measure of interaction among molecules. This form will give the concentration dependence of θ , and one needs in addition an expression for the potential dependence. We can write (assuming C=activity)

$$\gamma = - QdV - RT\Gamma d \ln C$$
 (61)

which implies

$$\left(\frac{\partial \ln C}{\partial V}\right)_{\Gamma} = + \frac{1}{RT} \left(\frac{\partial Q}{\partial \Gamma}\right)_{V}$$
(62)

From the above we have Γ at V=0 as a function of C, $\Gamma(C,0)$, and we need Q(Γ ,V) to establish $\Gamma(C,V)$. Frumkin (15, 26) assumes the form of Q(C,V) to be

$$Q(\Gamma, V) = Q_{W}(1-\Theta) + C'(V-V_{n})\Theta, \qquad (63)$$

where

Q_w = Q(C=0,V), C' = differential capacitance of double layer for 0=1 (assumed constant),

and $V_n = \text{potential of } Q = 0$ for O=1.

Then

$$\left(\frac{\partial Q}{\partial \Gamma}\right)_{V} = -\frac{Q_{W}}{\Gamma_{m}} + \frac{C}{\Gamma_{m}} (V - V_{n}), \qquad (64)$$

and

$$C(V) = C(0)e^{\frac{1}{RT}\int_{0}^{V}(\frac{\partial Q}{\partial T})dV} = C(0)e^{-\frac{1}{\Gamma_{m}RT}\int_{0}^{V}[Q_{v}-C'(v-v_{n})]dV}.$$

This allows one to write

$$\frac{\Theta(C,V)}{[1-\Theta(C,V)]} = B_0 C_e^{2\beta\Theta(C,V)} = B_0 Ce^{2\beta\Theta} e^{-\phi/\Gamma_m RT}$$
(66)
where $\Phi = \int_0^V [\Omega_w - C'(V - V_n)] dV$.

Equation 66 is the Frumkin isotherm (15) including potential dependence, and the equation of state (26) resulting from it is

$$\gamma_0 - \gamma = \int_0^V Q_w dV - \Gamma_m RT[ln(1-\theta) + \beta \theta^2], \qquad (67)$$

where γ_0 = surface tension of pure electrolyte solution. Using our definition of Gibbs elasticity, $E_{Gibbs} = (\frac{-\partial \gamma}{\partial \ln \Gamma})$ = $(-\Theta \frac{\partial \gamma}{\partial \Theta})$, we have

$$E_{Gibbs} = \Gamma_{m} RT \left[\frac{\Theta}{1-\Theta} + 2\beta\Theta^{2}\right] .$$
 (68)

Also, from our isotherm, we can now generate an expression for $(\frac{dC}{d\Gamma})^{i}_{C_{0}}$ which is necessary in our correction for diffusion.

We know $d\Gamma = \Gamma_m d\Theta$, and thus

$$\left(\frac{\mathrm{d}C}{\mathrm{d}\Gamma}\right)_{C_{0}^{*}} = \frac{1}{\Gamma_{m}} \frac{\mathrm{d}C}{\mathrm{d}\Theta}^{*}$$
(69)

From our isotherm,

$$C' = \frac{e^{-2\beta\Theta}}{B_0} \left(\frac{\Theta}{1-\Theta}\right) e^{\Phi/\Gamma_m RT}, \qquad (70)$$

therefore

$$\left(\frac{\mathrm{dC}}{\mathrm{d\Gamma}}\right)_{\mathrm{C}_{0}^{\dagger}} = \frac{\mathrm{e}^{\Phi/\Gamma_{\mathrm{m}}\mathrm{RT}}}{\Gamma_{\mathrm{m}}\mathrm{B}_{0}} \quad \frac{\mathrm{d}}{\mathrm{d\Theta}} \left(\frac{\mathrm{\Theta}\mathrm{e}^{-2\beta\Theta}}{1-\Theta}\right) = \frac{\mathrm{e}^{\Phi/\Gamma_{\mathrm{m}}\mathrm{RT}}}{\Gamma_{\mathrm{m}}\mathrm{B}_{0}} \left[\frac{-2\beta\mathrm{\Theta}\mathrm{e}^{-2\beta\Theta}}{1-\Theta} + \frac{\mathrm{e}^{-2\beta\Theta}}{(1-\Theta)^{2}}\right]$$

$$(71)$$

or

$$\begin{pmatrix} \frac{dC}{d\Gamma} \end{pmatrix}_{C_0^*} = \left(\frac{e^{\Phi/\Gamma_m RT}}{\Gamma_m B_0} \right) \left(\frac{e^{-2\beta\Theta}}{(1-\Theta)^2} \right) \left(1 - 2\beta\Theta + 2\beta\Theta^2 \right)$$
(71a)

Before we go further, let us simplify the term Φ involving the potential dependence to make our calculations more tractable. Let us assume that V_n is approximately zero, and that Q_w can be approximated by C_wV , where C_w is the differential capacitance of the interface in the abscence of specific adsorption (assumed constant). This Yields

$$\Phi = \int_{0}^{V} (C_{w} - C') \, dV = \frac{1}{2} (C_{w} - C') V^{2} \quad .$$
 (72)

Let $K = (C_w - C')/2\Gamma_m RT$ and we can write our isotherm as

$$\frac{0}{1-0} = B_0 C e^{-KV^2} e^{2\beta 0} .$$
 (73)

With our simplified potential dependence, we have a form

which may be used for generating numerically O(C,V) values, knowing β , B_0 , C, and k. Then, with this Θ value, we can evaluate E, the complex surface elastic modulus, if we know μ_g . From 48 and 49 we can write

$$E = (E_{Gibbs} - i\omega\mu_{s}) / [1 + \frac{in'D'}{\omega} (\frac{dC}{d\Gamma})], \quad (74)$$

with E_{Gibbs} and $(\frac{dC}{d\Gamma})$ calculated as indicated above.

The Hg-solution interface with the passage of a current

The discussion of the mercury-solution interface has heretofore been limited to the case where the interface is ideally polarized, i.e. there is zero current passing through the interface, and the interface is at equilibrium. Let us consider the case where a current is passing through our interface, the mechanism by which the current arises not being of concern at this point. The tangential stress, at the interface as shown in equation 18, may be put in the form

$$\sigma_{xy}(\text{interface}) = \left(\frac{\partial \gamma}{\partial x}\right)_{y=0} . \tag{75}$$

Let us rewrite this as

$$\sigma_{xy}(\text{interface}) = \left(\frac{\partial \gamma}{\partial V}\right) \left(\frac{\partial V}{\partial x}\right)_{Y=0}$$
(76)
where we can replace $\left(\frac{\partial \gamma}{\partial V}\right)$ according to 45, by -Q, and have
 $\sigma_{xy}(\text{interface}) = -Q\left(\frac{\partial V}{\partial x}\right),$ (77)

where term $\left(\frac{\partial V}{\partial x}\right)$ is the potential gradient along the interface.

The potential can be assumed to take the form

$$\mathbf{v} = \mathbf{v}_0 + \Delta \mathbf{v} , \qquad (78)$$

where V_0 is the potential imposed externally upon the interface, of the form V = Uy where U = electric field strength and ΔV is that potential due to the wave motion of the interface in the presence of the imposed potential. By analogy to our arguments concerning concentration, we can write, since $\nabla^2 V=0$ (36, 50)

$$\Delta V = V - V_0 = 2e^{i(\kappa x - \omega t)}e^{-\kappa y}$$
(79)

and

$$\sigma_{xy} = -Q\left(\frac{\partial(\Delta V)}{\partial x}\right)_{y=0}.$$
 (80)

For an interface through which a current is passing, from the requirement of conservation of charge, we can write (40)

$$\sigma\left(\frac{\partial(\Delta V)}{\partial y}\right)_{y=0} = \frac{\partial}{\partial x} \left(Qv_{x}\right)_{y=0} + \left(\frac{\Delta V}{R}\right)_{y=0}$$
(81)

where R = rA, A=area, r=interfacial resistance

and $\sigma = specific conductivity$

$$= \frac{F^2}{RT} \sum_{i=1}^{2} \sum_{i=1}^{2} D_i C_i \text{ with } C_i = \text{ concentration of } i^{\text{th}} \text{ species}$$

$$D_i = \text{ diffusion coefficient} \text{ of } i^{\text{th}} \text{ species}$$

$$z_i = \text{ valence of } i^{\text{th}} \text{ species}$$

$$F^i = \text{ Faraday constant}$$

$$R = \text{ gas constant}$$

$$R = \text{ gas constant}$$

Solving this expression for Z, the unknown constant, we have

$$Z = \frac{\frac{\partial Q}{\partial x}(i\kappa A + mB) + Q(\kappa^2 A - im\kappa B)}{(\sigma \kappa + \frac{1}{R})}$$
 (82)

Now, if we insert this in Equation 77, we get the expression for the interfacial stress due to electrical effects, $\sigma_{xy}(\text{interface}) = \frac{A(iQ^2\kappa^3 - Q\kappa^2(\frac{\partial Q}{\partial x})_{y=0} + b[(iQm\kappa(\frac{\partial Q}{\partial x})_{y=0} - Q^2m\kappa^2]}{(\sigma\kappa + \frac{1}{R})}$ (83)

Inserting this in our boundary conditions, and then into the determinant from our system of equations, we obtain the electrical analogue for u_2 ,

$$u_{2}(\text{electrical}) = \frac{\omega [iQ^{2} - \frac{Q}{\kappa} (\frac{\partial Q}{\partial x})_{y=0}]}{\gamma (\sigma \kappa + \frac{1}{R})}$$
(84)

or the analogue for E is

$$E(electrical) = \frac{\omega [iQ^2 - \frac{Q}{\kappa} (\frac{\partial Q}{\partial x})_{y=0}]}{(\sigma \kappa + \frac{1}{R})} .$$
(85)

If the term $\frac{1}{\kappa} (\frac{\partial Q}{\partial x})_{y=0} << Q$, we have

$$E(electrical) \simeq \frac{i\omega Q^2}{(\sigma \kappa + \frac{1}{R})}, \qquad (86)$$

or the elastic modulus is a pure imaginary quantity, indicating a phase lag.

If we go back to our expression for surface stress, and include both electrical and adsorbate effects, we have

$$\sigma_{xy} = \left(\frac{\partial \gamma}{\partial x}\right) = \left(\frac{-\partial \gamma}{\partial \ln \Gamma}\right) \left(\frac{\partial \ln \Gamma}{\partial x}\right) + \left(\frac{\partial \gamma}{\partial V}\right) \left(\frac{\partial V}{\partial x}\right)$$
(87)

or

 σ_{xy} (interface) = σ_{xy} (surfactant) + σ_{xy} (electrical). (87a) Thus the stress effects can be assumed additive, which gives

$$\sigma_{xy} = E \frac{\partial^2 \xi}{\partial x^2} - Q(\frac{\partial (\Delta V)}{\partial x})_{y=0} , \qquad (88)$$

or

us

$$u_{2}(\text{total}) = u_{2}(\text{film}) + u_{2}(\text{electrical})$$
(89)
$$= \frac{1}{\gamma} \left[\frac{-\partial \gamma}{\partial \ln \Gamma} - i\omega \mu_{s} \right] / \left[i + \frac{in'D'}{\omega} \left(\frac{dC}{d\Gamma} \right)_{C} \right]$$
$$+ \frac{1}{\gamma} \left[\frac{\omega \left(iQ^{2} - \frac{Q}{\kappa} \left(\frac{\partial Q}{\partial x} \right)_{Y=0} \right)}{\gamma \left(\sigma \kappa + \frac{1}{R} \right)} \right] .$$

.

EXPERIMENTAL SECTION Ripple Instrumentation

The instrumentation used to examine the mercury-solution interface was based upon the instrumentation developed for capillary ripple measurements (45-47), with a frequency source, a modified phonograph speaker for generation of the ripples, and a modified phonograph cartridge for measurement of the ripples. The phonograph speaker was coupled to the interface by an inverted T-bar, with the top of the T parallel to the undisturbed interface, which oscillated perpendicular to the interface when the frequency source was activated. The phonograph cartridge used in measuring the ripples was mounted on a micro-manipulator with three degrees of motion and was coupled to the interface by a receiving probe in the shape of an L, the bottom leg of the L being parallel to the generating bar at the interface. The signal from the receiving probe coupled to the phonograph cartridge was shown to be proportional to the wave amplitude (45), and was thus an accurate measure of relative amplitude changes in the ripples. The horizontal drive of the micro-manipulator was mechanically connected to a Helipot resistor, which was calibrated from a vernier scale on the micro-manipulator in terms of distance, using a Wheatstone bridge circuit, giving an accurate distance

measuring device rigidly attached to the receiving probe. The wavelength of the ripples was measured as follows: The signal from the frequency generator was used as the yinput, and the receiving probe signal, after amplification, was used as the x-input to an oscilloscope. The resulting Lissajous pattern gave a measure of the phase relationship between the input signal from the oscillator and the output signal from the cartridge. If the receiving probe was moved horizontally such that the Lissajous figure went through a 360 degree phase change, the distance moved by the probe was one wavelength, which could be measured by the resistance change caused by moving the probe. The frequency was measured accurately by monitoring it with a frequency counter, and the signal from the receiving probe was measured, after filtering and amplifying, using a rms VTVM (vacuum tube voltmeter).

In the capillary ripple instrumentation, a thick rigid wire, machined from two sides at a right angle to form an edge, was used as that part of the T-bar in actual contact with the surface, while a single edge razor was used as the bottom leg of the L-shaped bar used as the receiving probe.

Initial experiments at the interface between mercury and an aqueous solution utilized the same electronic instrumentation as described above. However, it was observed that
the receiving probe made with the razor blade welded onto a rigid wire corroded very easily at this interface. Steps were taken to redesign the receiving probe such that useful measurements could be made. Empirically, the probe found to give the best results was a rigid, high-quality stainless steel wire of a diameter slightly greater than that of a paper clip. This wire was bent in the form of a modified L, with the bottom leg being rounded at both the attached and free end, and was coated with paraffin or Teflon resin to further reduce corrosion. The generating probe attached to the speaker was left much as described above, with a paraffin coating used to stop corrosion and maintain a constant contact angle at the interface.

In the initial experiments, there was a problem with noise picked up by the receiving probe, which was improved somewhat by the redesign of the probes as mentioned above (See Figure 1). In later experiments another method of eliminating the noise was utilized. It was found that a special type of amplifier (known as a lock-in-amplifier) which was phase and frequency sensitive in the signal which it amplified was commercially available. A Princeton Applied Research Corporation Model HR-8 precision lock-inamplifier was purchased and substituted in the circuitry for the signal amplifier used with the receiving probe signal (see Figure 2).

The lock-in-amplifier, hereafter referred to as LIA, is described in its instruction manual as follows:

"The ... amplifier is essentially a detection system capable of operating with an extremely narrow equivalent bandwidth. Its function is to select a band of frequencies from a signal spectum applied to its input circuit and to convert the information therein to an equivalent bandwidth at dc. The basic element of a lock-in-amplifier is a phase-sensitive detector in which the signal voltage is mixed with a reference voltage, producing sum and difference frequencies."

(See Figure 3)

The sum frequencies are rejected by a filter, the difference components of the signal at the reference frequency are passed, and they have a zero frequency, i.e. they are dc. If the reference frequency used in the LIA is the same as the frequency of oscillation used to excite the generating probe, the LIA can be used to eliminate that noise picked up by the receiving probe not at the frequency of the ripple oscillation. This could be done by changing manually the reference frequency generated internally in the LIA to agree with the external frequency source used up to this time. It was discovered, however, that this reference frequency generated internally could be tapped for external use. This reference frequency was then used as the frequency source

for the ripple experiments, after it was first amplified to a level sufficient for excitation of the speakergenerating probe assembly. The internal frequency from the LIA was measured after amplification using a frequency counter, as described previously; it was also used as the x-input to the oscilloscope, with the external signal from the receiving probe through the LIA as the y-input. At , times the signal to the speaker was monitored using an ims voltmeter to determine if the signal was fluctuating and to insure that the speaker was not overloaded.

As previously stated, the initial instrumentation included signal filters. These were tuned filters, tuned to frequencies of 20, 60, and 240 Hz, so as to eliminate noise from line voltage frequency and its multiples, and also noise generated in the instrumental circuitry. It was determined, once the LIA was included in the measuring set-up, that the two lower frequency filters led to a large power loss, gave some distortion of the wave form displayed on the oscilloscope and they were therefore eliminated. The 240 Hz filter was retained for use at the mercury-solution interface, as it appeared that this filter was necessary for stability of the Lissajous figure displayed on the oscilloscope.

The micro-manipulator, used to mount the receiving probe and crystal cartridge in these experiments, was a Brinkman

Instruments model MP-V. This differed from the one used in this laboratory previously in that it had available rotation in the horizontal plane. besides motion in two mutually perpendicular directions in this plane, and that it had a coarse and fine control for vertical motion. A Starrett Co. Flex-O-Post was attached to the arm which was used for motion in the direction of ripple propagation. This is an extension arm which allows flexible motion when unlocked, but becomes rigid when locked, and was attached for easier positioning of the receiving probe at the interface. The crystal cartridge and receiving probe were attached to this Flex-O-Post arm by a Lufkin Co. Universal Friction Joint, again for more freedom of motion in positioning the receiving probe. A Starrett Co. Satin-Chrome Master Vernier Caliper was modified and attached to the micro-manipulator to increase the accuracy of the calibration of the Helipot resistor used with a Wheatstone bridge circuit for measuring distance in the direction of These modifications of the microripple propagation. manipulator were performed by D. Brown and C. Miller of the ISU physics shop.

Polarization Apparatus

The initial experiments at the mercury-electrolyte solution were performed with no provisions for controlling the polarization of the interface. As explained in the theoretical section, the properties of this interface should be strongly dependent on the polarization of the interface. The data obtained at the unpolarized interface substantiated this strongly; they were so non-reproducible as to be essentially meaningless. It was therefore necessary to set up a system in which the interfacial polarization could be controlled and monitored during the course of interfacial ripple measurements. The following design resulted from a combination of theory and empirical observation.

The interface was prepared by placing a shallow Teflon dish (6 in. by 6 in. by 1 in.) inside a larger glass dish (8 in. by 8 in. by 2 in.), filling the glass and Teflon dish with the aqueous solution, and pouring the mercury through the solution to displace it in the Teflon dish. The mercury was poured in last to reduce splattering of the mercury and attendant mercury vapor health hazards. This construction permitted convenient cleaning of the interface by aspiration.

The polarization of the interface was effected by placing six platinized platinum sheet working electrodes as symmetrically as possible about the Teflon dish and connecting

these to the cathode of an adjustable e.m.f. source, while the mercury was connected to the anode. The e.m.f. was provided by two or three mercury batteries in series with a conventional voltage divider. The potential was monitored with a saturated calomel electrode (hereafter referred to as SCE) dipping into the aqueous phase connected to a high precision potentiometer whose other connection was to the mercury.

The design of a polarization system for interfacial ripple experiments was complicated by the necessity of a relatively large interface resulting in an appreciable current flow. One problem was to minimize interfacial area as much as possible without introducing problems due to reflections from vessel edges. Another problem was to increase the number of working electrodes as much as possible to decrease the current flow from a given electrode and increase the uniformity of the potential field at the mercury. As the mercury is a conductor, in the absence of a current passing through the interface the potential gradient at the interface must be normal to the mercury from the dielectric liquid (36, 50). To a good approximation, with a small current passing through the interface, having the working electrodes at as great as possible a distance from the interface will even out the electric field at the interface, providing the distribution of working electrodes is relatively symmetric. This was experimentally verified in

that the potential measured did not vary more that one millivolt as the calomel electrode varied about the interface.

The best placement of the calomel electrode was another feature of the apparatus that had to be empirically determined. As the interface was so large as to make exclusion of oxygen very difficult, the system was exposed to the atmosphere. Thus, there was a small degree of oxidation of the mercury at the interface. The chloride ions which of necessity leak from the SCE interacted with the oxidized mercury to precipitate Hg,Cl, at the interface if the distance or time was such that Cl could diffuse to the interface during the course of an experiment. Thus it was found best to place the calomel as far as possible from the interface. Also, it was found necessary to place the calomel electrode away from the vicinity of any of the working electrodes because the local potential fluctuation about these did not correctly reflect the potential in the liquid at the interface. Then within the time of an experiment, the insertion of the calomel electrode did not interfere with the data taking.

The first two series of experiments were performed with the polarization apparatus described above. In later experiments, due to some apparent anomalies in the data, the apparatus was modified to allow continuous monitoring of the current-voltage relationships in the polarization

circuitry. This was done by placing a small (relative to the total circuit) resistor in series with the working electrodes, and using the voltage drop across this resistor as a direct measure of the current. This voltage was fed into the x-input of a Mosely Autograf X-Y Recorder. The y-input was the polarization voltage as measured between the SCE and the mercury. The data were then plotted by the recorder to display accurately the current-voltage relationships during experimentation.

Experimental Materials and their Preparation

The following interfacial systems were studied:

- 1. Octanoic Acid in 0.1-N HClO₄--Mercury
- 2. Phenol in 0.1-N HClO₄--Mercury

3. Sodium Decyl-Sulfonate in 0.050-M Na₂SO₄--Mercury. In each system, the first mentioned material is the surfactant, and the second the so called "inert electrolyte", which makes the solution conducting, permitting the polarization of the interface.

Extreme precautions had to be taken with the purity of the materials used in experiments at the mercury-solution interface, as this interfacial system has been shown to be very sensitive to impurities (20, 32). The mercury, especially, had to be treated very carefully to insure that its surface was free from contaminants. Triply distilled mercury was obtained from the Ames Laboratory stockroom, rinsed with dilute KOH solution, rinsed with dilute HNO₃, and then washed twice in purified water. The rinsing, in all cases, was done by letting the mercury flow through a fine capillary tip to break up into a stream of small droplets which fell through the washing solution. The washing solutions were contained in 100 ml. burettes attached to a movable rack, especially constructed to carry the weight of large volumes of mercury. During and after purification, the mercury was kept covered with a layer of purified water to prevent oxidation of its surface.

The purified water was obtained by taking tap distilled water, distilling it from alkaline permanganate solution, and then doubly distilling from an all quartz still. Periodic checks of this water by R. L. Bendure¹ showed its surface tension to be in agreement with the best quoted literature values.

The perchloric acid used was Baker Analyzed 70% HClO₄, which was diluted with no further purification. Analytical reagent Na₂SO₄ was used directly as received. Initially the reagent was heated at 800°C. for two hours to eliminate organic contaminants, but it was pointed out by Professor

¹R. L. Bendure, unpublished results, Department of Chemistry, Iowa State University, Ames, Iowa, private communication. 1967.

Harvey Diehl¹ that this procedure could yield more impurities, especially other oxidation states of sulfur, than it eliminated, and the commercial synthesis of the Na₂SO₄ was not likely to introduce organic impurities.

The octanoic acid was purified by taking the middle fraction, boiling over a 1° range at 238°C., from the distillation of chemically pure octanoic acid through a 30 plate Oldershaw column. Solutions were prepared by diluting a concentrated solution of the acid.

The phenol was analytical grade reagent, containing no preservative, further purified by distillation through a Vigreaux column. The phenol solutions were prepared by diluting a standardized solution, the concentration of which was determined by bromination (30).

The sodium <u>n</u>-decyl-sulfonate (NaDS) was obtained from Aldrich Chemical Co., and was further purified by recrystallization from ethanol. Solutions were prepared by weighing for the more concentrated solutions, and by dilution for the lower concentrations.

Experimental Procedure

With the interfacial ripple experimental system, two types of experiments are possible. The first is the variable distance measurement, in which the frequency and other variables of the system are kept constant while the output

¹H. Diehl, Department of Chemistry, Iowa State University, Ames, Iowa, private communication. 1967.

voltage of the system is measured as a function of distance. In the second type of experiment a constant number of waves is maintained between the two probes by varying the frequency as other variables of the system are changed.

Variable distance method

This type of experiment is the type of experiment for which the apparatus was initially designed. The frequency and surface parameters are kept constant while the output voltage from the receiving probe and the Lissajous figure displayed on the oscilloscope are monitored as the distance is varied. The distance variation is measured by resistance readings from the Helipot attached to the horizontal drive of the micromanipulator. This technique furnishes output voltage as a function of distance, with the wavelength of the ripples being obtained by distance readings between Lissajous figures having a 360° phase difference. The Lissajous figure which results from two signals of the same frequency and different amplitudes is an ellipse which degenerates to a straight line when the two signals are in phase or 180° out of phase. This straight line was observed to be the most sensitive and most accurate figure for detecting the phase change necessary for measuring wavelengths. The error of the wavelength readings for lower frequencies was between .1 and .5%, while for higher frequencies (lower wavelengths) the error was between .5% and

1.5%. This was due to the fact that the absolute error in the difference reading used to obtain the wavelength remained the same, while the difference decreased.

The plot of output voltage vs. distance is not a simple exponential curve as one would expect for a running wave, but a periodic function of distance due to standing waves set up between the two probes. To calculate the damping coefficient from the output voltage (OV) vs. distance curve, one must use methods which take this fact into consideration. Hansen and Mann (25) have done this, and the formula used to calculate results is a modification of their results by Lucassen and Hansen (43). Due to superposition of reflected waves between the probes, the OV vs. distance data will show maxima and minima. Drawing envelope curves through these maxima and minima, we obtain the variables V(d), and v(d), where V is the envelope curve of the maxima, and v, of the minima. The damping coefficient, α , can then be given as

 $\alpha = \{\ln[1/V(d_{i})+1/V(d_{i})] - \ln[1/V(d_{j})+1/V(d_{j})]\}/(d_{i}-d_{j})$ (90) where i and j indicate two position whose Lissajous figure differ in phase by one cycle, and d is the distance reading at a point. If the distance between probes is large enough, the output may be assumed (to a good approximation) to be a simple exponential function of distance of the form

$$OV = OVOe^{-\alpha X}, \tag{91}$$

where x is the distance between probes, and OVO is the output at the generating probe. The damping coefficient may then be calculated as

 $\alpha = \ln(0V_i/0V_j)/(x_i-x_j)$ (92) where i and j are two positions differing by an integral number of wavelengths. Within the accuracy of the experimental data, after the number of wavelengths between probes exceeded approximately 10 - 12, the damping coefficients calculated by the two formulae were the same, and so because of the simplicity of the experiments needed to obtain the data for using 92, this calculation was used.

Constant k technique

This was the second type of experimental method used to obtain ripple data, and as its name indicates, it is a method in which the wavenumber, $k = 2\pi/\lambda$, is kept constant during the course of the experiment (5, 24). This was done by setting the probes at a constant separation with a straight line for a Lissajous figure, and keeping this Lissajous figure constant by changing the frequency as the surface parameters were changed. In this type of experiment, the initial frequency was arbitrary. The experiment furnished frequency and output voltage as functions of the changing surface parameters.

The damping coefficient and the wave number at the initial frequency were determined by a variable distance

measurement. The wavenumber was then kept constant and the damping coefficient was calculated at all other frequencies by relating it to the initial measurement. When the experiments were in their first stages, the damping coefficient at an arbitrary frequency, v, was related to the measured value at the initial frequency using the following formula:

 $\alpha(v) = \alpha(v_0) - (1/L) \ln[OV(v)/OV(v_0)]$, (93) with v_0 = initial frequency, L = probe separation. This equation assumed that the output of the speaker was frequency independent at constant electrical input. This assumption was true if the frequency range investigated was small, but if the experimental range was large, the calculation procedure had to be modified to account for the frequency dependence of the wave generator. This was done experimentally, and the modified equation

 $\alpha(\nu) = \alpha(\nu_0) - (1/L) \ln[OVO(\nu_0)OV(\nu)/OV(\nu_0)OVO(\nu)], \quad (94)$ where OVO(ν) is the calibrated output of the wave generator at a given frequency, resulted.

The surface parameters, the interfacial tension and the surface elastic modulus, were varied by changing the polarization of the interface for a constant concentration of surfactant, this being done for a chosen range of concentrations. Controlling the polarization of the interface permitted an accurate, variable method of controlling the surface, a method feasible only if one of the two liquids in an interfacial system is a conductor.

Choice of surfactants

The choice of surfactants was based on the availability, ease of purification, and completeness and quality of pertinent reference data. The surfactants also had to be relatively involatile, due to the large amount of surface area exposed during experimentation.

The octanoic acid was chosen due to the availability of data from previous investigations in this laboratory (26, 27, 43). The phenol was chosen to utilize the work of Kelsh (23, 31) while the NaDS was chosen to utilize the work of Smolders (55-57). In the last two cases, full electrocapillary curves were available over a range of concentrations.

The density and viscosity values used in all calculations were literature (29) values for mercury and pure water. The viscosity and density of the aqueous solutions were assumed to be unaffected by the electrolyte and surfactant. Cleaning of the Interface

Before each experiment, a high negative polarization was imposed upon the interface for about two minutes, and then the interface was aspirated with a fine capillary after ceasing the polarization. As the surface returned to equilibrium at zero applied potential, those impurities present tended to collect in the center of the mercury

surface due to the fact that the interfacial tension remained higher there while the interface discharged. The Marangoni effect then swept the surface contaminants toward the center for easy removal by aspiration. Other impurities were field desorbed into the bulk solution, and hopefully did not return to the interface during the course of an experiment.

CALCULATION SECTION

Introduction

As mentioned above, initial experiments at the mercurysolution interface were performed utilizing variable distance measurements. All later experiments, however, were performed using the "constant k" techniques. "Constant k" experiments generated output voltage and frequency values as functions of interfacial polarization, plus initial damping coefficient, frequency, and wavelength These sufficed to give experimental values of values. ω , k and α , while values for μ , μ ', ρ , and ρ ' were taken from the literature. Reference data yielded γ values. Since our theory contains ten variables, and 2 equations (the real and imaginary parts of equation 32) relating them, the 8 variables mentioned above enable us to solve for the two unknown quantities, the real and imaginary components of the surface elastic modulus. With the assumption E=0 the theory enables us to solve for γ .

YCOR

With these considerations, a program YCOR (Figure 4, Appendix B), was written to analyze the experimental data. The first part of the program reads in viscosities, densities wavelength, initial damping coefficient and corresponding output voltage, and probe separation as fixed variables.

It then reads the arrays of frequency, output voltage, and polarization voltage. The output voltages are then modified by subroutine AMPCOR to account for the amplitude-frequency response of the ripple generator. AMPCOR requires the frequency at which the initial damping coefficient is measured, and the polynomial coefficients from the calculated fit to the experimental amplitude-frequency data generated by the program CALB, to be discussed later. The main program, YCOR, then calculates the experimental damping coefficients using equation 94, and calculates experimental Y2 values. Experimental Y1 values are calculated from experimental values of ω and k, and the reference values of γ , ρ , and ρ' . The experimental Yl and Y2 values for each voltage are placed in arrays to be used as needed. The program then calculates experimental γ assuming E=0, and experimental Re(E) and Im(E) using equations 44 and 45, respectively. These operations are performed using the complex arithmetic procedures available with the FORTRAN IV, G level, computer language available on the IBM 360/65 computer at the ISU computation center. Subroutine MODEL is then called by the main program.

Subroutine MODEL was included in the program to generate values of several variables from the modified Frumkin model of surface behavior discussed in the theoretical section. Taking as input values the surfactant concentration, surface

viscosities of the pure interface and of the surfactant, the voltage of the ECM for the given surfactant concentration, β , $1/B_0$, $1/B_0\Gamma_{max}$, $RT\Gamma_{max}$, and K (the electrical desorption exponent), the subroutine draws from the main program the polarization voltages and calculates surface The values for θ are generated coverage (Θ) values. using a numerical method known as binary chopping (21). If it is known that a function is positive at one end of an interval, negative at the other, and has only one root in the interval, it is possible by successively chopping This is done the interval in half to arrive at the root. by setting our equation for Θ in the form $f(\Theta)=0$, and then choosing 0<0< 0.9999999 as the initial interval. We know that f(0) is less than zero and f(.999999) is greater than zero, so our root lies in this interval. We define Θ_{mid} as $\frac{1}{2}$ the interval midpoint, 0.4999995 in this case, and evaluate $f(\theta_{mid})$. If it is less than zero, this becomes our new lower interval bound and if it is greater than zero, it becomes our new upper interval bound. In either case, Θ_{mid} is recalculated and the procedure is repeated until the difference between the bounds is less than the desired accuracy, in our case 1×10^{-6} .

After Θ has been evaluated, it is used to generate the components of the surface elastic modulus as described in

the theoretical section. These elasticity components along with frequency, densities, and viscosities are fed to subroutine POLZRO, a subroutine programmed by J. Mann to evaluate the complex wave number using the above input. POLZRO utilizes the Newton-Raphson method (14) to extract the desired complex root of the equation resulting from the determinant solution to the ripple boundary value problem.

This method was chosen after an attempt to calculate α using a simple iteration method with modeled parameters failed. The equation resulting from our determinant, 44, was rewritten as $\alpha = g(\alpha)$. Then an attempt was made to generate α values by writing

 $\alpha_{n+1} = g(\alpha_n)$, (95) where α_0 is chosen as the experimental value, and all other values in $g(\alpha)$ are from model or experiment.

A test of $(\alpha_{n+1}-\alpha_n)^2$ was included to monitor the convergence of the iteration to a final value of α_n . This method, using two different data sets, generated either negative α values, or $g(\alpha)$ became very large and the calculation did not converge in 500 iterations. The negative α values are physically impossible in our steady-state systems, while large α values are probably due to roots from transient, non-sinusoidal waveforms. These results led to the choice of the approximation method programmed by J. Mann in POLZRO.

GVAL

GVAL (see Figure 5, Appendix B) was written to generate interfacial tension values at arbitrary voltages from coefficients of a polynomial fit to electrocapillary curves produced by a program, ECl, written by D. Broadhead¹. The procedure used was to input interfacial tensionvoltage values into ECl, and then take the polynomial fit from this program into GVAL, which will then calculate γ values at any voltage desired. The program was written because some of the reference interfacial tension values were measured at 100 mv. intervals, while during much of the interfacial ripple experimentation, the data were measured at 25 mv. intervals.

CALB

CALB (see Figure 6, Appendix B) was programmed to fit the ripple generator amplitude response at constant electrical input-frequency data, and to generate coefficients from this fit. The main purpose of the program was to catalogue and arrange amplitude-frequency data to be fed into subroutine OPLSPA. This subroutine, available at the ISU computer library, is written to take an array of dependent

¹D. Brcadhead, unpublished results, Department of Chemistry, Iowa State University, Ames, Iowa, private communication. 1966.

and independent variable data and fit it with a polynomial in the dependent variable of desired degree (up to a maximum of ten) whose fit is optimal in the sense of least squares. It is a rapid and efficient computer method of obtaining fits to data sets of reasonable accuracy.

The frequency range of 150-600 Hz for which reasonable data were obtainable was split up into 3 sections, 150-230, and 230-325, and 325-600. This was done as there is a mechanical resonance in the ripple generator at a frequency near 210 cps, and because fitting the other sections separately gave a more accurate fit.

The amplitude data were calculated from experimental data using NWV, a program written by R. L. Bendure, and described in his thesis (4).

Because calculations tended to multiply errors and because many of the variables depended on calculations of small differences between large numbers, most of the programming was done using double precision accuracy.

One other program was utilized in handling the interfacial ripple data, and this was a program to study error propagation in the calculation of ripple parameters from experimental data. This program takes **as** input experimental parameters and their absolute errors, and from these calculates the error in the variables computed from these data. This program was written by J. Mann, Jr.

RESULTS

System I: Octanoic Acid in N/10 HClOA

As previously stated, the experimental systems studied were octanoic acid in .1-N HClO_A, phenol in 0.1-N HClO_A, and sodium decyl-sulfonate in 0.050-M Na₂SO₄. Of these, the first to be studied was the octanoic acid system, for which there is no reference electrocapillary data available (at least to this author's knowledge). This implies that only a qualitative type of evaluation of the data from this system was possible, since calculations based on modeled behavior require interfacial tension values. The experimental data permitted one to calculate Y2 and interfacial tension (assuming E=0) as functions of the polarization voltage. The concentrations of surfactant used were $c_0/8$, $c_0/32$, $c_0/64$, (c_=saturation concentration), and the pure electrolyte. These concentrations were chosen since preliminary orderof-magnitude calculations indicated that they would give a range of surface behavior that would hopefully illustrate all facets of the behavior of the dimensionless variable, Y2, the reduced damping coefficient.

The experimental Y2 data of Figure 7 (24) yielded results in good agreement with the qualitative predictions of behavior based on previous experience at the air-water interface. For the pure electrolyte, the values of Y2 were small and relatively insensitive to the polarization imposed on the interface. Y2, with $c = c_0/64$, was close to that of the pure electrolyte for high polarizations vs.the ECM, and went through a maximum centered at the ECM, the region of highest surface coverage. Again for $c = c_0/32$, Y2 was approximately equal to that of the pure electrolyte at high polarizations. However, it exhibited two maxima, at voltages equally spaced in the positive and negative direction with a (lower) value at the ECM equal to the value at $c_0/64$. The Y2 data for c_/8 gave a broad flat maxima centered about the ECM, tapering off sharply to the pure electrolyte value at high polarizations. It may be noted here that the values of the maxima for c_/32 were close (.0165 vs. 0157) to values generated for the NaDS system when reference data were available. Also the Y2 for $c_0/8$ (0~1) was very close to the limiting behavior for large E shown for NaDS (.013 for both cases) (see .00025 NaDS).

For the octanoic acid data, the interfacial tension values were calculated using a modification of equation 34

 $\gamma = \gamma_0 (\nu/\nu_0)^2, \qquad (96)$

where γ_{0} is a known or calculated value (again from 34), and

¹In the following material, the polarizations will be referred to the electrocapillary maximum (ECM) for the given concentration, i.e., V=0 at ECM. For the phenol in 0.1-M $\rm HClO_4$, this varies from -.475 to -.625 V. vs. S.C.E. as the phenol concentration increases. For NaDS in 0.05-M $\rm Na_2SO_4$ the ECM varies with the concentration from -.460 to -.690 volts vs. S.C.E. (see Appendix D). The voltages on the figures are as experimentally measured vs. the S.C.E.

 v_{n} is the frequency corresponding to this value. This equation also results if the dimensionless variable Yl is assumed constant, which will be true to the accuracy of the experimental data if E = constant. The interfacial tension values calculated from the ripple data assuming E=0 gave both qualitative and quantitative agreement with reference data for the pure electrolyte (Figure 8). The values from the surfactant solutions (Figure 9), while displaying several features expected of surfactant electrocapillary curves, seemed to be qualitatively incorrect. The curves were not always smooth, and the interfacial tension values at the ECM did not monotonically decrease with increasing concentration as has been observed with all other electrocapillary data. It should be noted that the assumption E=0 is not very well justified for the surfactant data, since the quantity Yl will not be constant, as seen from equation 30, and will vary with E.

The data for the octanoic acid system was obtained at 50 mv. intervals (except in the region of rapid Y2 change), as compared to the 25 mv. interval used in the other experimental systems, due to the fact that these investigations were of a preliminary, qualitative nature. It was initially felt that this interval was sufficient to give all qualitative features of the system. However, the interval was reduced

in later experimentation since the reference interfacial tension data was available in this spacing, and it afforded better resolution of variable changes.

System II: Phenol in N/10 HClO,

Introduction

The phenol in 0.1-N perchloric acid system was chosen because a complete investigation of the electrocapillary properties of this system had been done in this laboratory by D. Kelsh (23, 30).

The concentrations chosen were those used by Kelsh, 0.001-M, 0.005-M, 0.010-M, 0.030-M, 0.060-M, and 0.100-M. Together with the data from the pure electrolyte, these concentrations sufficed to give a rather complete description of the surface properties of phenol as measured at the polarized Hg interface throughout almost its entire range of surface concentration.

The data for the phenol system was obtained before the Lock-In-Amplifier was obtained, and thus the output voltage data was read from a rms VTVM after non-selective amplification of the signal from the crystal cartridge connected to the receiving probe. These data were also obtained with all of the tuned filters (20, 60, and 240 Hz) included in the circuit to eliminate noise, and a resultant signal **atten**uation. The error levels in the phenol data remained rela-

tively constant throughout the concentration range and may be given to a good order of approximation by the following values: wavelength -0.1 to 1.0%; output voltage - 10 to 15%; frequency - 0.1 Hz; polarization voltage - 0.01 mv; and reference interfacial tension - 0.2 to 0.3 dyne/cm.

For each concentration of phenol, data were taken over the entire electrocapillary range; i.e., in the interval -1.3 volts to +0.25 volts vs. S.C.E. at 25 mv. intervals. Parameters for modeled behavior

The parameters that are needed for the modified Frumkin model are easily determined from the discussion given in the theoretical section. The first of these is the Frumkin exponent, β , which describes the lateral interaction in the surface layer. For phenol this parameter has been determined by previous work in this laboratory (27) to be 1.22. The quantity B had also been determined in this work, but later work by Kelsh showed the earlier value of 5.5 to be in error. His work showed that at c=0.005-M the value of Θ , the surface coverage, was $\geq \frac{1}{2}$. This simplies that B_{0} , approximated for $\Theta=0$ (Langmuir behavior), is equal to 1/0.005, or 200. This was the value chosen as the input value for the computer calculation of the modeled values. No literature surface viscosity values could be found for this system. It seems that work measuring surface viscosities at the surfactant solution-mercury inter-

face has never been attempted, the work being limited to the air-water and the organic oil-water interfaces. Therefore it was necessary to make order-of-magnitude arguments to choose values as input parameters for the calculation. From the values mentioned in Davies and Rideal (3), values of 10^{-6} surface poise for the pure interface and 10^{-4} surface poise for the phenol are not unreasonable. Several μ_{a} values were also used in the calculation to determine the importance of the contribution of this part of the elastic modulus to the behavior of surface. If these values were less than 10^{-3} surface poise, their effects were unimportant. The maximum surface concentration, Γ_{max} , was evaluated from the data of Kelsh to be 4.1 x 10^{-10} moles/cm². This gives a value for the parameter $RT\Gamma_{max}$ of about 10, the value used in the calculations. The value of $1/B_0\Gamma_{max}$ appearing in the diffusion term was roughly used as an adjustable para-The value chosen was 10,000, while evaluation meter. of it using the data above gives 12,200, essentially equal values considering the accuracy of the model. The exponent, K, which appears in the electrical term, would be given by $(C_{\rm w} - C_{\rm org})/2RT\Gamma_{\rm m}$ if both of the capacitance values were constant through the polarization range. But since they are not, the value of K estimated from Kelsh's capacitance data at various polarizations showed it to be in the range from 10-40, when V is in volts. A value of 15.0 for phenol

was then chosen from this range to give 0 values in the experimental range. This value gave the appropriate width to the 0 vs. V curve. The voltage of the electro-capillary maximum for each concentration was determined from the data of Kelsh, and is listed with each concentration in Appendix D.

Behavior of ripple parameters

The frequency vs. polarization curves (hereafter, plot abscissa will be polarization unless otherwise stated) from the phenol data resembled electro-capillary curves. At the lower concentrations and with the pure electrolyte, the curves were parabolic in shape, with some little flattening and lowering in the center. At concentrations of 0.01-M and greater, the curves became noticeably flattened about the center. Only one of these curves (Figure 10) is given in Appendix C, with the data for all the others given in the data listings (see Appendix D).

As would be expected, the electrocapillary curves calculated from the interfacial ripple data assuming E=0 agreed quite well with the reference data at the lower concentrations; as the concentrations increased the agreement became less satisfactory, especially at more negative potentials. A plot (Figure 11) showing both the experimental and reference values for 0.005-M phenol illustrates the type of behavior observed.

The θ curves (Figure 12) calculated with the parameters given above showed the effect of concentration on the amount of surfactant adsorption. There was a large increase in θ between 0.001 and 0.005-M about the ECM. With increasing concentration, the θ peaks became broader and shifted slightly with the ECM values in the direction of negative polarization. It appeared, at least from these calculated curves, that the desorption from the maximum coverage occurred over a narrow voltage range with the coverage being little affected until this rapid desorption set in.

The model-generated values of the complex surface elastic modulus reflected the coverage increases due to concentration, but also began to show the effects of the diffusional interchange between the bulk solution and the interface. As the values for θ approached one, the term $(1-\theta)^2$ in the quantity $\frac{dC}{dT}$ of the diffusional correction became dominant with respect to other terms in the expression for E. This counteracted the contributions to E from the increasing coverage, especially at higher concentrations, so that the calculated E passed through a maximum (located between .005 and .01-M) with increasing concentration. The experimental curves did not show such readily interpretable behavior, but did indicate a decrease in elasticity components at higher concentrations. It was difficult to inter-

pret the behavior of the experimental curves due to the fact that they were very sensitive to experimental error, a fact which will be discussed in more detail later. Figure 13 illustrates the behavior of the model and experimental values for one phenol concentration, with the data for all concentrations given in Appendix D.

Figures 14-17 give results from experiment and the model with the diffusion correction included for the dimensionless parameter Y1, the Kelvin function, at the lower phenol concentrations (0 through 10^{-2} -M). The experimental curves in these plots showed much the same structure. They decreased from a maximum at the extreme negative polarizations to an almost linear form sloping from negative to positive voltages. The model-generated Y1 curves did not show similar behavior. The pure electrolyte curve was constant, the 10^{-3} M curve had a single shallow maxima, while the .005 and .010-M curves had a pair of maxima about the ECM.

Figures 17-20 give the Yl curves for the more concentrated phenol solutions. The experimental curves are similar to those of the more dilute solutions. Two model curves, one calculated with and one calculated without the diffusion correction to E, are given for each concentration to illustrate clearly the importance of diffusion to the ripple parameters. The maxima in Yl displayed at .005 and .010-M

are washed out in the more concentrated solutions if the diffusion term is included. If it is not included, these maxima become more important and more acute. In all curves, the model and experiment agree within 2% except at potential extremes.

The Y2 curves from experiment and model (including the diffusion term) for the more dilute (0 to .01-M) phenol solutions are given in Figures 21-24. The experimental curves, except for the pure electrolyte, are approximately linear in form, with a positive slope from negative to positive voltages. The .01-M experimental curve also shows a small minimum just to the negative side of the ECM. The experimental Y2 magnitude increases with the phenol concentration.

The model Y2 curves for these concentrations are constant for 0 and 10^{-3} -M, while the .005 and .010-M solutions show a broad hump with a shallow maxima on either edge about the ECM.

Figures 25-27 show the Y2 curves from experiment and model (again, with and without the diffusion correction) for .030, .060 and .100-M phenol. The experimental curves are almost constant, increasing somewhat from positive to negative voltages. When the diffusion term is included, the model values are likewise, almost constant, with a hump in the center which broadens out and flattens as the concentration increases, showing that diffusion becomes dominant at

higher concentrations. If the diffusion correction is not included in the calculation of our model-generated values, the Y2 curves show the paired maxima seen experimentally with octanoic acid. The agreement between experiment and model is quite good for the higher concentrations when the model includes diffusion, and for 0 and 10^{-3} -M. But at .005 and .01-M, the experiment and model differ by as much as 50% about the maxima in the model curves, perhaps indicating that the diffusion effects may become important at lower concentrations than the model suggests.

System III: NaDS in 0.05-M Na₂SO₄

Introduction

The second surfactant system to be studied in detail with the aid of reference interfacial tension data was sodium <u>n</u>-decyl-sulfonate, hereafter referred to as NaDS, in 0.050-M sodium sulfate. This system was chosen because of the availability of the reference data¹ (56-57), and the difference in electrolyte and surfactant from the two previously investigated systems. The electrolyte sodium sulfate was a neutral salt, as opposed to the perchloric acid. The surfactant NaDS was ionic and contained a sulfonate group attached to the hydrocarbon skeleton, in contrast to the non-ionic (in acid media) and oxygen-

¹This data of these references was kindly made available in tabulated form in a private communication by C. Smolders. C. A. Smolders, Velp, The Netherlands, 1966.

containing surfactants used in the other systems.

Anomalous behavior

Just due to these differences in chemical structure, the experimental results from the NaDS system were expected to show unique behavior. But preliminary results differed from previous work in a manner which did not seem to stem from the static, molecular properties of the system. The system with zero or low surfactant concentrations exhibited anomalies in experimental values for output voltage and frequency in the region of interfacial polarization bounded on the negative side by -.400 V. and on the positive side by -0.100 V. (both referred, as were all experimental polarizations, to the saturated calomel electrode-SCE). The frequencies increased more slowly with polarization than expected from the reference electrocapillary data, and then exhibited a discontinuous jump to the expected value at the negative end point of the polarization region. The output voltage which reflected the wave amplitude dropped sharply in this region and then increased gradually. This occurred when the polarization was scanned from positive to negative, but not when the scanning direction was reversed. The anomalies decreased as surfactant concentration was increased, disappearing at a NaDS concentration of 0.00005-M.

The possibility of electrochemical effects was considered, and apparatus as described in the experimental section was

set up to monitor the current-voltage relationships during the ripple experiments. The current-voltage curves showed that the current went through a distinct maximum in the region of the anomalies in the ripple data, and that this maximum decreased and then disappeared with increasing NaDS concentration. The current maxima appeared only as the polarization was scanned from positive to negative, and was absent when the direction of polarization scan was reversed. The general shape of the current-voltage curves at the higher concentrations was that of a polarogram of a pure electrolyte with no reducible rotal ions present. As the surfactant concentration was decreased to the point where the maximum appeared, the curve took on the appearance of a polarogram run in the presence of O_2 without "maximum suppressor" present (Figures 57-59).

Whenever an aqueous solution is exposed to the atmosphere, it rapidly becomes saturated with 0₂ from diffusion processes. This dissolved oxygen interferes with many phenomena studied in aqueous solution electrochemistry. In polarography especially (28, 31), it has long been known that solutions must be purged and then continuously flushed with nitrogen to rid the solution of the oxygen in order that it not interfere with the reactions of interest at the dropping mercury electrode. If this is not done, the oxygen maxima appears in the current voltage plot, sometimes masking

other reactions of interest.

The amounts of solution and the amount of interfacial area common to polarography are small when compared to the quantities used in the interfacial ripple experiments. It was thus very difficult to exclude oxygen satisfactorily from the system. Solutions were purged before experiments, but became apparently saturated with oxygen very soon after they were poured over the mercury pool forming the lower phase. Continuous flushing of the solution by a stream of nitrogen could not be used because the attendant mechanical disturbance involved interferred with ripple measurements.

According to Kolthoff and Lingane (31), this behavior closely parallels the oxygen maxima in polarography, which occurs in the region of the above observations. The oxygen maxima is caused by the electrochemical reduction of oxygen at the Hg surface, the resulting streaming of the solution, and the sharp current increase due to the reduction process. There are other maxima observed in polarograms, usually independent of the direction of polarization scan. But the acute O_2 maxima does not show like behavior and is dependent on the direction of the potential scan, appearing only as one goes from positive to negative. Kolthoff and Lingane (31) also quote Heyrovsky as observing that during and up to the peak of the maximum, the interfacial tension remains unchanged instead of showing the usual changes due to
electrocapillary effects, then changes abruptly when the maximum disappears and follows the usual electrocapillary curve again. They state, in addition, that surfactants in appreciable concentrations will cause maxima to disappear.

This strongly suggested that the oxygen reduction and its resultant effects were closely allied to and perhaps the cause of the unusual ripple data. The effect from the 0, reduction which caused the discontinuities in the frequency curves appeared to be the constancy and then the sharp jump in the interfacial tension during the reduction process, since from the previous ripple data the frequency was known to reflect interfacial tension changes. But the reason for the drop in output voltage from the receiving probe, indicating a rise in the damping coefficient during the reduction process, did not lend itself to such easy interpretation. Even the fact that the interfacial tension remains relatively unchanged during the reduction process has never been adequately explained, and this appeared to be closely involved with whatever physical processes occurred in the reduction.

Proposed explanation of anomalous behavior

It was at this point that the considerations of electrical effects in the boundary conditions were included in the theory in an attempt to explain this behavior. Maxima had appeared in the model-calculated Y2 curves when the Re(E) was

approximately 20, and the Im(E) was about 10 or less. This was true for the model data from both the NaDS and phenol. If only the real component is considered, and the order of magnitude of the interfacial tension is considered to be about 400, this implies u_2 will be about .05 when Y2 shows a maximum. From the theory, we can write the expression for the electrical contribution to u_2 as $(i=\sqrt{-1})$

$$\mathbf{u}_{2}(\text{electrical}) = \frac{\omega}{\gamma} \left[\frac{i\Omega^{2} - \frac{\Omega}{\kappa} (\frac{\partial \Omega}{\partial \mathbf{x}})_{\mathbf{y}=\mathbf{0}}}{\kappa\sigma - 1/\kappa} \right] \qquad (33)$$

Inserting numerical values typical of our experimental situation of $Q = 9 \times 10^{-6} \operatorname{coul/cm}^2$, $\sigma = 1.12 \times 10^{-9} \operatorname{coul}^2$ - $\sec/g-cm^2$, $\kappa = 64 \text{ cm}^{-1}$, $\frac{1}{B} = 10^{-3} \text{ ohm}^{-1} \text{ cm}^{-2}$, $\omega = 2512 \text{ sec}^{-1}$, and $\gamma = 415 \text{ dyne/cm}$, we have u_2 (electrical) = $[5.05 (\frac{\partial \Omega}{\partial x})_{y=0} + 3 \times 10^{-3} i]$ dyne/cm. The derivative $(\partial \Omega/\partial x)_{y=0}$ thus becomes important in the value of the electrical contribution of u_2 . u_2 (real) will be about 0.05 if this term is about 0.0035. $(\partial \Omega/\partial x)_{y=0}$ is the gradient of the surface charge density tangential to the interface in the direction of wave propagation. If we approximate this by $(\Delta \Omega / \Delta x)$ and attempt to obtain by physical arguments the values of numerator and denominator, we may determine the order of magnitude of the term. One approximation for AQ may be the difference in Q for the two interfacial tensions at the polarizations which bound the region of the 0, reduction. The order of magnitude of this

closely approximates the value of Q itself, because the negative boundary of the region is close to the ECM where Thus ΔQ is approximately 8 x 10⁻⁶ coul/cm.² (23, 30). Ω=0. We may approximate Δx to be .05 cm, the distance between wave peak and trough which is $\frac{1}{2}$ the wavelength. These approximations imply that this gradient is about 1.6 x 10^{-4} , which is too small to explain the phenomena under study. Both terms, real and imaginary, seem to differ from the desired value by about a factor of 10. This may be due to the choice of the electrical boundary condition for passage of current through the interface, or else the value of the charge density gradient may be larger than our order-ofmagnitude arguments would lead us to believe. But it appears that the electrical effects cannot be neglected in the consideration of the mercury-solution interface, expecially in the polarization regions where there is an appreciable current passing through the interface.

The theoretical considerations which form the basis of the double layer theory for the mercury-electrolyte interface are based on the assumption of the ideal polarizable electrode (20). This means that the surface and double_layer properties about the interface vary with the potential applied to the interface, but there is no current passing through the interface throughout the potential changes (negligible current density). This assumption has proved especially

fruitful in the studies of the mercury-solution interface using the capillary electrometer, which has only the small interfacial area of a mercury drop coming out of a very small capillary, and low current density at the Hg surface. With the ripple experiments, the surface area of Hg was large (200 cm²), and about the O₂ maximum the current density was not negligible.

Discussion of experimental and model results

The lower NaDS concentrations showed the importance of electrical effects. The frequency curves (Figures 28 and 29) were dependent on the direction of polarization, as were the experimental (Figures 30 and 31) Y1 and Y2 curves. The modelgenerated curves did not display any behavior unique to the polarization region about the O_2 reduction. This was to be expected, as no special considerations for the O_2 reduction were inserted in the model, which included the ideal polarizable electrode assumption. Outside of the anomalous region the model and experiment showed much better agreement.

For the model itself, a different set of parameters was chosen as input. NaDS begins to show considerable surface activity at a concentration much lower than phenol, and therefore should have greater B_0 value. Accordingly, a value of 4000 was chosen for the NaDS. Γ_{max} for NaDS was taken as 5.5 x 10⁻¹⁰ moles/cm², i.e., the straight chain alcohol value. These two then gave a diffusion term

 $\frac{1}{\Gamma_{\rm mB}}$ of 455, and a RT $\Gamma_{\rm max}$ value of 13.5. The electrical desorption exponent was chosen to have a value of 12.5, a value which gave approximately the correct width to the region of adsorption. The Frumkin exponent β was not available from experimental data, but it would appear that the lateral interactions in the MaDS monolayer would be stronger than in phenol because of the longer chain length of the hydrocarbon skeleton involved, as suggested by E. Lucassen -Reynders (42). Therefore, & value of 1.5 was chosen (c.f. 1.2 for phenol). The surface viscosities were again, as with phenol, not available in the literature, and were rather arbitrarily taken as 5 x 10^{-4} surface poises for the NaDS and 1×10^{-5} surface poises for the pure interface. The NaDS value was made larger than the corresponding phenol value to again reflect the larger lateral interaction expected for the sulfonate.

Some experimentation was done before choosing the β value, and this showed that the coverage, elasticity, Y1, and Y2 curves generated from the model were very sensitive to this parameter, especially with respect to their shape. With a small β value, the coverage vs. polarization curve is dominated by the electrical desorption term and is a smooth curve, almost Gaussian in shape. But as β becomes large, the 0 curve begins to be almost like a square wave in shape. The value of 0 is near one in a wide central region (the width of which increases with β) and drops abruptly to zero at the endpoints of this region within a very narrow voltage range (Figure 35). The 0 curves for all concentrations with $\beta=1.5$ are given in Figure 34.

The maxima affected the ripple parameters of the NaDS in 0.05-M sodium sulfate system for the pure electrolyte, 10^{-6} , 10^{-5} , and 2.5 x 10^{-5} -M NaDS. The data for these concentrations at voltages outside the reduction process showed reasonable agreement with the model in the regions about the ECM for the Yl data (Figures 30, 36-38), with agreement becoming less satisfactory at the more extreme polarizations. The Y2 results for model and experiment could not be interpreted so easily, for the effects of the O, did not disappear as rapidly as they did with the Y1 values. For the pure electrolyte (Figure 31), where the frequency range was scanned from negative to positive as well as from positive to negative (the procedure used in all of the other experiments in this thesis), the Y2 data agreed well with the model when the maxima effects were not present. This seemed to be true for the other concentrations also (Figures 46-48).

Initial experiments with NaDS were performed with reagent used as received, i.e., not recrystallized from hot ethanol. At high reagent concentrations ripple characteristics were substantially the same for purified and unpurified

reagent, but at low concentrations the unpurified reagent was much more effective in reducing the oxygen anomaly. This was interpreted to indicate that the material used as received contained trace amounts of n-decyl alcohol, a compound which is a byproduct in the synthesis of the sulfonate from n-decyl halide and sodium sulfite. The n-decyl alcohol displays more surface activity than the NaDS, and probably damped out the reduction process to a much greater degree than the corresponding amount of the sulfonate. The exact effects of the trace amounts of the alcohol on the ripple parameters could not be assessed with any accuracy due to the interfering oxygen effects when the alcohol was eliminated. The behavior is analogous to the effects of trace amounts of lauryl alcohol in lauryl sulfate, where the effects are prevalent at low but not high concentrations (48).

At the concentration at which the oxygen effects were no longer present, 0.00005-M, the data generated from the model for Y1 and Y2 first began to show structure. Up to this concentration, the calculated Y1 and Y2 curves had been essentially constant. The 0.00005-M Y1 and Y2 model curves had single maxima (Figures 39 and 49) but the higher **concentra**tions of 0.0001, 0.00025, 0.0005, 0.001, 0.0025, and 0.005-M NaDS had the paired sharp maxima and intermediate minima for both Y1 and Y2 (Figures 40-45, 50-55). The width of the

minima for both parameters increased with concentration, the magnitude of the Y1 maxima being greatest at 0.0001-M, and the magnitude of the Y2 maxima being greatest at 0.00025-M. The voltages at which these two parameters showed maxima did not quite coincide, the Y1 maxima occurring about 25 mv. farther away from the ECM than the Y2 maxima. When the generated Y1 maxima appeared, 0 was about 0.45, while the generated Y2 maxima appeared when 0 was about 0.6. Both of these coverage values occurred on the 0 curves in the region of maximum rate of change. It may be true that the actual maxima occur at a voltage value within the 25 mv. increment, but a smaller voltage increment was experimentally unfeasible.

The effects of diffusion on the model-generated parameters did not appear to be as appreciable as in the case of phenol, for the maxima were decreased somewhat, but not washed out at higher concentrations.

is with the phonol, the magnitudes (Figures 45-51) of the experimental and model Y1 and Y2 values agreed reasonably well, but the shapes of the experimental and model curves differed. The experimental Y1 curves for 5 x 10^{-5} and 10^{-4} -M HaDS (Figures 3° and 40) were nearly constant except for the voltages greater than -0.05 V vs. S.C.E., where they decreased sharply as the polarization increased. The solutions more concentrated than these (Figures 40-45)

had Yl curves (going from positive to negative polarizations) which decreased gradually to a minimum close to the ECM for the given concentration, and then increased rapidly after the ECN.

The experimental Y2 curves for 0.00005 and 0.0001-M (Figures 49 and 50) had a minimum at the ECM, and then increased to either side. The higher concentrations had Y2 curves (Figures 51-55) that were constant in a wide region about the ECM, and then decreased at far negative polarizations and also decreased somewhat at the more positive potentials, with a sharp increase at the endpoints for some solutions. The experimental data did not show the gradual decrease in magnitude with concentration to the extent that the phenol data did, indicating that experimentally as well as with the model, diffusion was less important with NaDS than with phenol.

The effects of β on Yl and Y2 can be seen in Figures 42 and 52 where these parameters are calculated with β =1.5 and 4.5. The curves displayed the square-wave-like structure shown by 0 in Figure 35. Maxima observed with β =1.5 did not appear when β =4.5.

Model and experimental elasticity values showed very different behavior. From the model, Re(E) increased with concentration up to 0.0005-M, and then began to decrease with concentration due to the effect of the diffusion. At higher

75 `

concentrations pairs of maxima, one on each side of the ECM for an individual concentration, appeared in the Re(E) curves due to the competing effects of the diffusion correction and the increasing adsorption. Figure 56 illustrates this behavior. Im(E) from the model decreased gradually with concentration, and then increased again, as the diffusion term became important.

Rewriting E in the form (a - ib)/(c + id), which is a simplified form of the theoretical expression used in the model, we can get simple expressions for both components of E. We may write

Re(E) =
$$(ac - bd)/c^{2} + d^{2}$$
 (97)

and

Im(E) =
$$-(cb + ad)/(c^2 + d^2)$$
, (98)

where

 $b = \omega \mu_s$, a = Gibbs elasticity, c = 1,

and d = diffusion correction .

In the model, b is much less than a, a and c are of the same order, and both a and c are much less than d when θ is about 1. Thus

Re(E) \simeq ac/d² and Im(E) \simeq -a/d. (99) The behavior of the model may be explained by the fact that

at lower concentrations the rate of change of a is greater

than d, and both terms increase at a given voltage with concentration. But when the coverages become close to one, the term d, the diffusion correction, becomes dominant.

The experimental elasticity curves, perhaps because of the use of the more accurate Lock-In-Amplifier in the measurements with the NaDS, were somewhat more interpretable than the corresponding values for the phenol. Yet the error level in the data propagates to such an extent in the calculation of E that the magnitudes of both real and imaginary components are unreliable, although relative trends may be significant. In the region of the 0_2 reduction and the large damping coefficients, the real component became large and then decreased when the reduction process was no longer important. The Re(E) experimental curve grew larger as the concentration increased and showed some fine structure, with a maxima about the ECM for 0.0001-M and 0.00025-M, and paired maxima on either side of the ECM for 0.001 and 0.0025-M NaDS. Figure 56 also illustrates the experimental behavior.

The imaginary component from the experimental data did not lend itself even to the qualitative interpretation given the real component. There was no regularity in its behavior, but it did change rapidly in the oxygen reduction region for the more dilute solutions.

The interfacial tension values calculated from the experimental data assuming E=0 showed agreement with the

reference data, except about the current-voltage anomalies. As might be expected, the agreement was not as good in the more concentrated solutions where elasticity effects become more important. A curve illustrating the comparison between experimental and reference data is given in the Appendix for 0.00005-1 NaDS (Figure 56).

The error levels for NaDS measurements were much the same as in the phenol experiments, except that the Lock-In-Amplifier permitted greater accuracy in measuring the output voltage. This gave about a 5-10% error in α . The reference interfacial tensions were not as accurate for the NaDS, partially because the curves were fitted. Thus .3-.4 dynes/cm may be a good estimate of the error.

The listed data from YCOR for NaDS is given in Appendix D.

DISCUSSION OF RESULTS

Octanoic Acid

The results from the octanoic acid in .1-N perchloric acid system demonstrated the usefulness of interfacial ripple techniques in the investigation of interfaces previously studied by other methods. In the octanoic acid system, the provious investigations (at least in this laboratory) had been made using differential capacitance measurements. Using the results of this earlier work as a starting point, the ripple results clearly showed that other dynamic properties of the mercury-solution interface could be investigated. The effects of polarization on the parameters of the interface were shown to affect not only the equilibrium properties but also those properties of the interface important during sinusoidal deformation.

The frequency response at constant k was shown to be strongly dependent on polarization of the interface, as well as on the concentration of the surfactant. This response appeared to be quite similar to the response of the interfacial tension to both the polarization and the concentration. Such a result was consistent with the predictions of the theory. Further confirming the predictions of the theory, the values of the interfacial tension calculated from ripple results assuming E constant gave meaningful re-

sults when the surface properties were constant. In the region of changing adsorption, and thus changing E, the values became less meaningful and indicated the assumptions in the calculation were no longer meaningful. Elasticity and Yl values could not be calculated for this system since no reference interfacial tension data were available.

The parameter Y2 was calculated from parameters measured directly in the ripple experiments. The dependence of Y2 on polarization agreed with the early qualitative predictions made from the theory (24) and also with the later quantitative predictions from the model. As the model indicated for NaDS, a reagent of seemingly similar surface properties, the Y2 values at negligible surfactant concentration should be low (about 0.008) and relatively constant. The pure electrolyte curve behaved in this way. At low surfactant concentrations the model predicted (Figure 51) a single maxima centered about the ECM, which agrees with the behavior of Y2 when the octanoic acid concentration was $c_0/64$. The magnitudes of the maxima were the same in the model and experiment. At intermediate concentrations the model predicted a pair of maxima about a minimum at the ECM (Figure 53), which the concentration $c_0/32$ exhibited. Again the quantitative agreement was quite good. The model indicated that further increases in concentration decrease the

effect of the surfactant on Y2 (Figure 55) eliminating the pair of maxima and giving the curve a humped structure with the magnitude of Y2 decreasing. These effects predicted by the model seem to stem from the fact that the diffusion correction to the elasticity began to be dominant at higher concentrations, the term $(1-0)^2$ predominating in the term $dc/d\Gamma$ as 0 becomes large. The octanoic acid at a concentration of $c_0/8$ showed such behavior.

Even though the model values discussed in reference to the octanoic acid data were from the NaDS system, the qualitative features should be the same for both. The results from the octanoic acid data indicated several things. The first was that the theory proposed in this laboratory predicted to a satisfactory degree of accuracy both the qualitative and quantitative behavior of interfacial ripple parameters. The second was that the octanoic acid system, even though values were not generated for this system, could be described quite well qualitatively by the Frumkin isotherm. The third result, which should have been more closely considered during the experimentation but was not interpreted correctly until the data were analyzed, was the importance of diffusion to the properties displayed by the ripple parameters. The fourth was that the experimental equipment devised for capillary ripples could be extended for use at the Hg-solution interface.

Phenol

The data from the phenol in N/10 perchloric acid--IIg system, both calculated and experimentally measured, showed this surfactant to have quite different properties from the octanoic acid. This was to be expected on the basis of their structures and their solubilitics. For octanoic acid (27), the saturation concentration is 0.0051 M/L, and B_{0} is 16.3. In this paper the values for the Frumkin isotherm were calculated on the basis of activities, assumed to be equal to c/c_0 , c_0 = saturation concentration. For the calculations based on the Frumkin isotherm in this thesis the correction for activity was included in the B_0 value. This indicated that the B value for octanoic acid in the terms of our model was approximately 3200, of the same order of magnitude as that used in the NaDS calculations. Hansen, et al. (27), give a B value for phenol of 5.5, a value as mentioned previously that is apparently in error, the value used being 200. But for phenol they give a c value of 0.896, two orders of magnitude higher than octanoic acid. This means for an equivalent surface concentration, the amount of phenol in the bulk solution is much greater than the octanoic acid.

The parameters Y1 and Y2 reflect this most directly. The high values of Y1 at the extreme negative polarizations

may be partially explained by the fact that at these voltages the hydrogen discharge at the mercury surface may have become appreciable, and the high current may have caused an IR drop which was not included in the potential measured. Higher polarizations and therefore lower interfacial tensions than the true values may thus have been used in calculations. As a result, the frequency data inserted in the Yl expression may not have been accurately reflected by the reference interfacial tension. All other terms being constant, these effects would give incorrectly high Yl values in this region. This effect would decrease as the potential applied to the interface became more positive, as the phenol data did. For all concentrations, the phenol data showed no discernible maxima as displayed by the model values. This seems to indicate that the effects of diffusion are even greater than included in our simplified model. The model correctly predicted that the diffusion effect short circuited the maxima at the higher concentrations. At the intermediate concentrations, where the model and experiment differed the most, surface properties are most difficult to predict and the surface properties calculated by the model are the most sensitive to change in the parameters used. In this region of concentration no single term dominates in the equations describing the system, and the results of these equations are dependent on small differences

between numbers of the same order of magnitude. Consequently, small changes in input give large changes in the results.

The Y2 data for phenol showed this parameter to be more dependent on the concentration than Y1, but did not show the sharp maxima of the octanoic acid curves or the model curves. The magnitude of the Y2 data considered over the whole polarization range for the individual concentrations rose and fell in agreement with the model in that it increased up to an intermediate concentration (0.01-M) and then decreased. But the shape of model and experimental curves were not the same, especially at the intermediate concentrations, the experimental data being more nearly constant with changing polarization than the model. Again, this may be due to a larger diffusion effect in the experimental data as suggested above. At the low and high concentrations, the model and experimental values were in good agreement. These results indicated that perhaps the modification of the Fruskin isotherm used describes limiting behavior of the surface quite well, but fails in the intermediate range, a fault of many isotherms used in describing surface behavior. Other reasons for disagreement at the intermediate concentrations may include the limited accuracy of the experimental data, incorrect choice of model input parameters, the simplification of the potential dependence in the model, or some

other unsuspected factor.

The effect of diffusion, even in the model data, was clearly illustrated when model values of Y1 and Y2 for the higher phenol concentrations were generated without considering this effect (Figures 18-20, 25-27). These results showed that, in this case, the coverage was the only parameter that affected these variables. Just from the model, which admittedly does not fully describe **our** interfacial system, the importance of diffusion in shortcircuiting surfactant effects on the ripple behavior was obvious.

NaDS

The sodium <u>n</u>-decyl-sulfonate in 0.050-M sodium sulfate solution-mercury interfacial system proved to be a very interesting system for study. The unexpected effects of the electrochemical reduction of dissolved oxygen indicated that this dynamic process giving a current flow across the interface had important effects on the ripple parameters. But why did this give such a large and discernible change in the experimental measurements? The theoretical explanation proposed in this thesis takes into account the electrical effects on the boundary conditions used to obtain the equations describing interfacial ripple propagation. Inserting what were thought to be correct numbers into the equations

resulting from the inclusion of electrical phenomena gave u_2 values which were one order of magnitude too small to account for the observations. The fault of this may lie with the accuracy of the values used in the calculations, or the failure to consider all physical processes occurring at the interface during the reduction. If the gradient of the surface charge density is one order of magnitude greater than our crude estimate during wave motion at the interface, our interpretation of the situation gives numbers which are of the correct order of magnitude to give a damping coefficient maxima about the voltage range of the reaction.

Another plausible reason for the anomalies in the ripple parameters may be production during the reduction processes of a short-lived intermediate at the interface which is strongly surface active and does not exist at the interface outside of the region of the reduction. When the oxygen in solution is reduced at the interface, peroxide ions and radicals are formed (31). These might possibly react with the surfactant, electrolyte, or mercury to give an intermediate which is strongly surface active, even in small concentrations.

Whatever the reason or combination of reasons for the ripple anomalies, there appears to be no question that these are related to the maxima which appear in polarography due to

O2 reduction. Both of these phenomena occur when the interface between mercury and an aqueous electrolyte solution is set in motion in the presence of an imposed potential. An explanation proposed by Heyrovsky (28) to interpret polarographic maxima suggests that there are varying current densities across the interface giving rise to surface tension gradients which cause electrocapillary flow of the Hg along the interface. This flow of the mercury causes the solution to be set in motion and fresh solution with the oxygen is brought to the interface, bypassing the normal diffusional processes which take place during reactions at the interface. The result is an intensification of the - current and the electrical field inhomogeneities of the interface, furthering the surface flow. The current and surface tension gradients Heyrovsky proposes would also give appreciable gradients in surface charge density as the double layer at the interface is disrupted with the passage of the current. If this is true, our interpretation of the phenomena is correct.

Heyrovsky further states that the reason for surfactants damping out the maxima in polarograms is that any flow at the surface in the presence of a surfactant brings fresh surfactant to the interface, decreasing the interfacial tension and eliminating interfacial tension gradients which give rise to the surface flow. It was observed that in-

creased addition of surfactant eliminates the anomalies caused by the **oxygen** reduction in the ripple parameters as in polarograms. The reasons may be similar to those proposed by Neyrovsky, or they may be due to the fact that an increased amount of surfactant may increase the interfacial resistance to current flow. This explanation is not as plausible, since polarograms which depend on current flow are run as a matter of course in the presence of large amounts of surfactants.

The results from the MaDS system for those portions of the lower concentration curves which were unaffected by the reduction, and also for the higher concentration curves, exhibited more concentration effects than the corresponding results from phenol. The experimental curves showed effects that seemed due to the adsorption and desorption of this surfactant during a polarization scan. But, as with the phenol, no maxima appeared in the Y1 or Y2 curves as suggested in the model. A fact which may relate to this was the absence of maxima in the model plots for Figures 42 and 52 for 5 x 10^{-4} -M NaDS when β was large. If the lateral interaction among the surfactant molecules was assumed to be large, the desorption of these molecules from the interface appeared to occur over a very narrow range, such that in the model the 25 mv. interval was not small enough to display the maxima which were known to appear at inter-

mediate surface coverages. This may have been true for the experimental case also; the voltage increment was too large to detect any maxima or the equipment was insufficiently accurate to observe the rapidly occurring maxima.

It must be here noted that the relative magnitude of the maxima in Yl predicted by the model for phenol and NaDS is only 2% from peak to minimum. The parameter Y2 is a number which varies at most from 7×10^{-3} to 2×10^{-2} , and thus is a small number and easily affected by experimental error. With these considerations in mind, it appears that the values from experiment and model agree quite well and justify both the theory developed to describe interfacial ripples and the model proposed to describe the interfacial behavior of the surfactants.

Experimental Errors and their Propagation

Experimental errors and their propagation in calculations based on experimental quantities are serious problems with interfacial ripple measurements and deserve separate discussion. In order to increase accuracy, the "constant k" type of experiment was introduced to replace the variable distance type of measurement, because this type of measurement kept constant the distance between probes, a quantity difficult to measure accurately. The importance of the accuracy of the probe separation, or more important, the

wavelength, is seen in Yl, where $k(=2\pi/\lambda)$ is raised to the third power. Writing the expression for the maximum differential error (4) in Yl we have

 $dYI/YI = 3dk/k + 2d\omega/\omega + d\gamma/\gamma + d(\rho+\rho')/(\rho+\rho').$ (100)Taking dk as .1% of k, d ω as .1 Hz, d γ as .2 dynes/cm, and $d[\rho+\rho']$ as 0.001 g/cm³, we have a value of 0.3% for the error. If dk is changed to .3%, this error becomes about 1%, and if the error in k is 1%, the Yl error is 3%. The other factor which may affect Y1 accuracy, as already mentioned, is the fact that the frequencies and surface tensions inserted into the formula may not always have been correctly corresponding values. Due to error caused by current flow across the interface, the potential at the interface may have been different than that measured by the calomel electrode. No estimate of this error is available, but if the potential measurements were inaccurate at the extreme ranges of polarization where frequency and interfacial tension are changing rapidly, a small potential discrepancy would give a large error in the frequency or interfacial tension. In the electrocapillary curve, at the far positive or negative potentials, a 25 mv. change may give a 1-2% change in γ , which would propagate to an error in Y1 of the same magnitude.

Writing an error expression for Y2, as with Y1, we have

 $dX2/Y2 = dk/k + d\alpha/\alpha .$ (101)

If we take dk as 0.1% of k and d α as 1% of α , the error in Y2 is 1.1%. But if the error in α is 10% and the error in k is 1%, the error in Y2 may be as high as 11%. Since the error in α may go even higher, a 10-15% accuracy in Y2 is about the level in the experimental quantities.

Extending this type of reasoning to the error in the elasticity coefficients, one observes that the errors propagate very significantly in the calculation of E. A program was written by J. Mann to examine the error level in this and all other ripple parameters. A sample calculation based on 0.060-H phenol using this program with 0.01% error in densities and viscosities, dk as .1% of k, dw as .62032, dy as .2, and da as 15% of a gave a standard deviation in both components of E larger than 100%. Errors of 10% in a with the other levels remaining the same gave standard deviations in the components of E of about 50%. Interpretation of experimental E values is thus very difficult with the present accuracy in the data.

CONCLUSIONS

The experimental and theoretical investigations of the morcury-solution interface described in this work indicate the following things: I. The ripple theory and experiment agree within experimental accuracy, and the ripple technique has proved itself to be an important new method of studying interfaces. II. The technique may be applied to various types of surfactants and base electrolytes. III. Electrical effects must be considered in the boundary conditions of the interfacial ripple equations if the theory is to be applicable to the mercury-solution interface when current flows across the interface. IV. Ripple measurements may be useful in studying the maxima effects in polarography. V. A simplified Frumkin model for interfacial behavior, when used to generate parameters for use in the ripple formulae, accounts for many of the qualitative features of experimental data and shows that diffusion plays a very important role in the propagation of interfacial ripples at the mercury-solution interface.

Studies with octanoic acid and phenol in perchloric acid solution and sodium <u>n</u>-decyl-sulfonate in sodium sulfate at various concentrations illustrated that the experiments were sufficiently sensitive and accurate to be useful at all polarizations studied. Variation of polarization at the

mercury-solution interface, an option not available at oilwater and air-water interfaces, permitted simple and accurate variation of interfacial properties, especially interfacial tension and surface excess.

Several extensions might be made to the work described in this thesis. An independent electrocapillary investigation of the octanoic acid system would yield reference interfacial tension data permitting this system to be reexamined using the model and the refined experimental techniques used in the NaDS experiments. Other surfactant and base electrolyte systems which show unique behavior as observed by other interfacial measurements could be studied by ripple techniques to extend the knowledge of these systems. Additional studies in systems which show polarographic maxima would give further insight into this long unexplained This would mean measurements on essentially phenomena. inorganic systems and would necessitate refinements of the current-voltage apparatus described in this paper. This type of study might prove applicable to the study of kinetics of reactions at the polarized Hg-solution interface.

The objectives of this work, development of a theory of interfacial ripples based on continuum hydrodynamics, development of experimental methods for their measurement at the polarized mercury-solution interface, demonstration that the theory interprets physical reality correctly by comparison

to experiment, and the experimental study of varied surfactant systems with the interpretation of their behavior, have been met. It is hoped that this work is only the starting point for a continued investigation of the dynamic properties of the mercury-solution interface, for this interface has been the testing ground for many of the theories of the electrical double layer and of electrode reaction kinetics. Further interpretation of its properties may give insight that will open new fields of study.

SUMMARY

A theory which was an extension of the theory of capillary ripples at the air-water interface was developed for the interface between two liquids. Further modifications of the theory were introduced to make it applicable to the study of the interface between mercury and an aqueous solution. These were made to include the electrical effects which are so important in determining the properties of this interface. A model which was a modification of the Frumkin isotherm was proposed to predict surfactant behavior through the entire polarization range studied and effects on the propagation characteristics of interfacial ripples.

Modifications of the instrumentation developed for the study of capillary ripples were made to enable the study of the polarized mercury-solution interface. These included the redesigning of the receiving probe, the development of a polarization system which would not interfere with the ripple propagation and still give accurately controllable voltages, the inclusion of a more accurate amplification system to increase the accuracy of the damping coefficient, and the introduction of equipment which would give currentvoltage curves for the interface under study.

Experiments were performed on three surfactant systems

and the experimental results compared to the predictions of the model. The calculations based on the data and the model were performed by programs written in FORTRAN IV language for use on the I.B.M. 360/65 computer available at the I.S.U. Computation Center. These programs fitted the amplitude-frequency response of the ripple generator, calculated interfacial tension data at any desired polarization increment from the fit of reference data, and performed calculations on the ripple data that gave both experimental and model values for parameters of interest.

The first surfactant system, octanoic acid in .1-N perchloric acid, gave results for the ripple parameters which agreed well with the qualitative predictions made before the start of experimentation. The frequency response at constant k closely paralleled the interfacial tension behavior. The Y2 curves showed maxima at intermediate concentrations, with a gradual decrease at higher concentrations, as projected from ripple behavior at the air-water interface. With the development of the model, the Y2 data (using the NaDS model results as the basis for comparison) were also shown to be in quantitative agreement with predicted behavior.

The second surfactant system, phenol in 0.1-N HCl)₄, (using the interfacial tension data of D. Kelsh) yielded results which were not as conclusive as for the octanoic acid system. The model was only able to predict trends in ex-

perimental behavior, for the maxima in Yl and Y2 as predicted by the model did not appear in the experiment. Both model and experiment, however, demonstrated the importance of diffusion to the ripple propagation characteristics for this surfactant, which is quite soluble.

The third surfactant system, sodium n-decyl-sulfonate in 0.05-M sodium sulfate, indicated the importance of electrical effects (especially high current density) on the ripple behavior, particularly in neutral solutions of low surfactant concentration. Data in the polarization region of neutral solutions where oxygen reduction occurs at the mercury surface suggested that this process had an important effect on ripple progagation. The relationship of polarographic maxima, due to this reduction, to the anomalies in the ripple experiments was shown. Order of magnitude estimates of surface electrical parameters placed them at least within a factor of 10 of values necessary to theoretically account for the ripple anomalies. Data from the higher concentrations of NaDS again illustrated that the model could predict trends, but not the fine structure of the experimental curves.

LITERATURE CITED

- 1. A. W. Adamson, Physical Chemistry of Surfaces, Interscience, New York, N.Y. (1963).
- 2. R. Aris, <u>Vectors</u>, <u>Tensors</u>, <u>and</u> <u>the Basic Equations of</u> <u>Fluid Mechanics</u>, Prentice-Hall, <u>Englewood Cliffs</u>, N.J. (1962).
- 3. R. A. Avestisyan and A. A. Trapiznekov, <u>Russ. J. Phys.</u> <u>Chem.</u> (English Translation), <u>38</u>, 1660 (1964).
- 4. R. L. Bendure, Propagation Characteristics of Capillary Ripples at Fluid /Fluid Interfaces, unpublished Ph.D. thesis, Library, Iowa State University of Science and Technology, Ames, Iowa. (1968).
- 5. R. L. Bendure and R. S. Hansen, <u>J. Phys. Chem.</u>, <u>71</u>, 2889. (1967).
- 6. R. C. Brown, Proc. Roy. Soc. (London), 48, 312 (1936).
- 7. B. B. Damaskin and G. A. Tedoraze, <u>Electrochimica Acta</u>, <u>10</u>, 529 (1965).
- 8. J. T. Davies and E. K. Rideal, <u>Interfacial Phenomena</u>, 2nd ed., Academia Press, New York, N.Y. (1963).
- 9. J. T. Davies and R. W. Vose, <u>Proc. Roy. Soc. (London)</u>, A286, 218 (1965).
- 10. P. Delahay, <u>Double Layer and Electrode Kinetics</u>, Interscience, New York, N.Y. (1965).
- 11. M. A. Devanathan, <u>Proc. Roy. Soc.</u> (London), <u>A267</u>, 256 (1962).
- 12. R. Dorrestein, Proc. Koninkl. Ned. Akad. Wetenschap., B54, 260 (1951).
- 13. J. D. Eliassen and L. E. Scriven, <u>On the Damping of</u> <u>Capillary Waves: Research Report</u>, <u>Dept. of Chem. Engr.</u>, <u>University of Minnesota</u>, <u>Minneapolis</u>, <u>Minn.</u> (1963).
- 14. C. Fröberg, <u>Introduction to Numerical Analysis</u>, Addison-Wesley, Reading, Mass. (1965).
- 15. A. N. Frumkin, Z. Physik., 35, 792 (1926).

ł

- .16. W. Garret and J. Bultman, <u>J. Colloid Sci.</u>, <u>18</u>, 798 (1963).
 - 17. S. Glasstone, H. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York, N.Y. (1941).
 - 18. F. C. Goodrich, <u>Proc. Roy. Soc. (London)</u>, <u>A260</u>, 490 (1961).
 - 19. F. C. Goodrich, <u>Proc. Roy. Soc. (London)</u>, <u>A260</u>, 503 (1961).
 - 20. D. C. Grahme, Chem. Revs. 41, 441 (1947).
 - 21. R. W. Hamming, <u>Numerical Methods</u> for <u>Scientists</u> and Engineers, McGraw-Hill, New York, N.Y. (1963).
 - 22. R. S. Hansen, J. Appl. Phys. 35, 1983 (1964).
 - 23. R. S. Hansen, D. J. Kelsh, and D. H. Grantham, <u>J. Phys.</u> Chem., <u>67</u>, 2316 (1963).
 - 24. R. S. Hansen and J. Lucassen, R. L. Bendure, and G. P. Bierwagen, J. Colloid Interface Sci., 26, 198 (1968).
 - 25. R. S. Hansen and J. A. Mann, <u>J. Appl. Phys.</u>, <u>25</u>, 152 (1964).
 - 26. R. S. Hansen, R. E. Minturn and D. A. Hickson, J. Phys. Chem., 60, 1185 (1956).
 - R. S. Hansen, R. E. Minturn and D. A. Hickson, <u>J. Phys.</u> Chem., 61, 953 (1957).
 - 28. J. Heyrovsky and J. Kuta, <u>Principles</u> of <u>Polarography</u>, Academic Press, New York, N.Y. (1965).
 - 29. C. D. Hodgman, ed., <u>Handbook of Chemistry and Physics</u>, 43rd ed., Chemical Rubber Publ. Co., Cleveland, Ohio (1961).
 - 30. D. J. Kelsh, The Deformation of the Electrocapillary <u>Curve Due to the Adsorption of Organic Molecules</u>, unpublished Ph.D. thesis, Library, Iowa State University of Science and Technology, Ames, Iowa (1962).
 - 31. I. M. Kolthoff and J. J. Lingane, Polarography, Vol. I and II, Interscience, New York, N.Y. (1952).

- 32. G. Kortüm and J. O'M. Bockris, <u>Textbook</u> of <u>Electro</u>chemistry, Vol. II, Elsevier, New York, N.Y. (1951).
- 33. B. B. Kudryavtsev, V. P. Akheladze, and K. I. Korchagina, Russ. J. Phys. Chem. (Engl. Transl.) <u>38</u>, 1251 (1964).
- 34. M. Kussakov, <u>Acta Physicochim</u>. <u>U.R.S.S.</u>, <u>19</u>, 286 (1944).
- 35. H. Lamb, <u>Hydrodynamics</u>, 6th ed., Dover, New York, N.Y. (1945).
- 36. L. D. Landau and E. M. Lifshitz, <u>Electrodynamics</u> of Continuous Media, Addison-Wesley, Reading, Mass. (1960).
- 37. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Addison-Wesley, Reading, Mass. (1959).
- 38. V. G. Levich, Acta Physicochim. U.R.S.S., 14, 307 (1941).
- 39. V. G. Levich, Acta Physicochim. U.R.S.S., 14, 321 (1941).
- 40. V. G. Levich, <u>Physicochemical Hydrodynamics</u>, Prentice-Hall, Englewood Cliffs, N.J. (1962).
- 41. G. Lippmann, Ann. Chim. Phys (5), 5, 494 (1875).
- 42. E. H. Lucassen-Reynders, J. Phys. Chem., 70, 1777 (1966).
- 43. J. Lucassen and R. S. Hansen, J. Colloid Interface Sci., 22, 32 (1966).
- 44. J. Lucassen and R. S. Hansen, <u>J. Colloid Interface Sci.</u>, 23, 319 (1967).
- 45. J. A. Mann, Propagation Characteristics of Capillary Ripples, unpublished Ph.D. thesis, Library, Iowa State University of Science and Technology, Ames, Iowa (1962).
- 46. J. A. Mann and R. S. Hansen, <u>J. Colloid Sci.</u>, <u>18</u>, 757 (1963).
- 47. J. A. Mann and R. S. Hansen, J. Colloid Sci., 18, 805 (1963).
- 48. G. D. Miles and L. Shedlovsky, <u>J. Colloid Sci.</u>, <u>2</u>, 57 (1943).

- 49. L. M. Milne-Thompson, Theoretical Hydrodynamics, 2nd ed., Macmillan CO., New York, N.Y. (1950).
- 50. W. K. H. Panofsky and M. Phillips, <u>Classical Electricity</u> and <u>Magnetism</u>, 2nd ed., Addison-Wesley, Reading, Mass. (1962).
- 51. R. Parsons, Trans. Faraday. Soc., 51, 1518 (1955).
- 52. R. Parsons, Ann. Rept. Progr. Chem., 61, 80 (1964).
- 53. R. Parsons, J. Electroanalytical Chem., 7, 136 (1964).
- 54. R. Parsons, J. Electroanalytical Chem., 8, 93 (1964).
- 55. C. Smolders, Rec. Trav. Chim., 80, 635 (1961).
- 56. C. Smolders, Rec. Trav. Chim., 80, 651 (1961).
- 57. C. Smolders, Rec. Trav. Chim., 80, 699 (1961).
- 58. D. Thiessen and A. Scheludko, <u>Dok. Akad. Nauk. S.S.S.R.</u>, <u>163</u>, 939 (1965).
- 59. W. Thompson (Lord Kelvin), Phil. Mag., 42, 368 (1871).
- 60. M. van den Tempel and R. P. van de Riet, <u>J. Chem. Phys.</u>, <u>42</u>, 2769 (1965).
- 61. K. Weigardt, Physik Z., 44, 10 (1943).

ACKNOWLEDGMENTS

The help, encouragement, and suggestions of Professor R. S. Hansen are gratefully acknowledged. Without his insight into both the theoretical and experimental aspects of surface phenomena, much of this work could not have been performed.

The help of David Broadhead in programming and in explaining electrocapillary behavior is also acknowledged.
APPENDIX A

Equipment Diagrams (Figures 1-3)

Figure 1. A block diagram of the early interfacial ripple instrumentation

BLOCK DIAGRAM OF FINAL INSTRUMENTATION

Figure 2. A block diagram of the final interfacial ripple instrumentation

BLOCK DIAGRAM OF LOCK IN AMPLIFIER

Figure 3. A block diagram of internal circuitry of lock-in-amplifier

APPENDIX B

Listings¹ of Computer Programs (Figures 4-6)

¹The listings were made from an I.B.M. 1401 printout of a I.B.M. 360/65 Fortran IV source deck. Thus the listing contains the symbol O from the 1401 which on the 360/65 is the symbol. This symbol is used on the 360/65 to input alphameric data within the program.

//BC17YCOR JUB @A0087,TIME=4,SIZE=128K@,GURDON,MSGLEVEL=1,REGION=96K //STEPONE EXEC FORTG, PARM.FORT=(MAP, DECK), TIME.GO=4, LINES=5 //FURT.SYSIN DD C. С FOR DATA TAKEN USING CONSTANT DOKOD METHOD YCOROG3 С INTERFACIAL TENSION CALCULATIONS INCLUDE GRAVITY CORRECTION ſ. UNLESS OTHERWISE NOTED, ALL POL. VOLTAGES VS. S.C.E. (IN VOLTS) YCDR004 С YCORU A PROGRAM WRITTEN IN FORTRAN IV(G LEVEL) FOR THE ANALYSIS UF INTERFACIAL RIPPLE DATA MEASURED AT THE POLARIZED MERCURY--SOLUTION INTERFACE BY G.P.BIERWAGEN . THE REQUIRED INPUT DATA С IS THE FOLLOWINGO С CARDS 1 + 2: TITLE , DATE, AND EXPERIMENTER (COL.1-80) CARD 3: UPPER LIQUID(COL.1-40) LOWER LIQUID(COL41-80) CARD 4: SURFACTANT AND ITS CONCENTRATION(COL.1-20) ELCETROLYTE С AND ITS CONCENTRATION(COL.21-40) C CARD 5: DENSITY OF UPPER LIQUID(COL.11-20) С DENSITY OF LOWER LIQUID(COL. 31-40) С VISCUSITY OF UPPER LIQUID (COL.51-60) C VISCOSITY OF LOWER LIQUID(CUL.71-80) CARD 6: INITIAL OUTPUT VOLTAGE (COL.11-20) INITIAL DAMPING COEFFICIENT (COL.31-40) WAVELENGTH FROM CONSTANT K EXPERIMENT (COL.51-6C) PROBE SEPARATION (COL.71-80) C CARDS 7-(N-8): EXPERIMENTAL DATA c POL.VULTAGE(COL.1-10) С С FREQUENCY(COL.11-20) C OUTPUT VOLTAGE(COL.21-30) С REFERENCE INTERFACIAL TENSION VALUES(COL.31-4C) CARD (N-7): BLANK TO INDICATE END OF DATA ARRAYS C С CARD (N-6): INITIAL FREQUENCY (COL.1-10) CARDS (N-5) TO(N-3): CUEFFICIENTS UF AMPLITUDE - FREQUENCY FIT С C CARD (N-2): FIRST CONTROL CARD FOR SUBROUTINE MODEL VECM(COL.1-10) С С CUNC(COL.11-20) 1/B0 (COL.21-30) MUP(COL.31-40) C C C MUORG(COL.41-50) С ELECTRICAL DESORPTION EXPONENT(COL.51-60) C FRUMKIN LATERATERAL INTERACTION EXPONENT(COL.61-70) CARD (N-1): SECUND CONTROL CARD FOR MODEL С GMRT(COL.1-10) DIFFUSION TERMICOL.11-20) CARD N: IF SINGLE OR LAST DATA SET LEAVE BLANK c IF THIS DATA PRECEDES ANOTHER DATA SET, PUT INTEGER IN С COL.1-5 C. С C C. COMPLEX#16 A0,A1,A2,A3,A4,B0,B1,B2,B3,B4,B5,KAPPA(101),ELAS(70), DCMPLX, X1, X2, Z1, Z2, N1, N2, M1, M2, IM, RE, CDSQRT, DCONJG, INTEN(70), 1 1 CCELAS(70), EEXTRA(70) REAL+8 LENGTH, OVO, ALPHO, WL, OMEGA, OV(70), EXTRA(70) ,S REAL +8 VOLTS(70), KV(70), Y1EXP(70), Y2(70), GAMMA(70), FREQ(70), RELAS(70), CELAS(70), ALPHA(70), WNO, D1, D2, V1, V2, INTENS(70) 1 REAL+4 ORG(5), ELECTR(5), SOURCE(20), PROGN(20), LIQL(10), LIQH(10)

Figure 4. YCOR listing

```
COMMON KAPPA, VOLTS, Y1EXP, Y2, ALPHA, CAMMA, FREQ, INTENS, RELAS, CELAS,
              KV, VI, VZ, D1, D2, WNU, ORG, ELECTR, NPTS
     1
      LQUIVALENCE (D1, RHULIT), (D2, RHOHEV), (V1, VISLIT), (V2, VISHEV)
                                                                               YCOPC2EA
ſ
      REAP IN LABELS, TITLES, AND CONSTANTS FOR THE CALCULATIONS
r_{\rm c}
C
  1'1 READ(1,1)PROGN, SOURCE, LIQL, LIQH
    1 FURMAT(2044/2044/1044,1044)
      WRITE(3,2) PROGN, SOURCE, LIQL, LIQH
    2 FORMAT(010,T41,2044/000,T31,2044/000,0MEASURFMENTS MADE AT 2,1044,YCU9032
              a/a,10A4, DINTERFACED)
     1
      #EAD(1,2000)URG,FLECTR
 2 00 FORMAT(2(544))
      WRITE(3,200)ORG, ELECTR
  2() FURMAT(2 0,544,0 0,544)
                                                                               YURE 33
      READ(1,3)RHOLIT, RHOHEV, VISLIT, VISHEV
    3 FURMAT(4(10X,F13.0))
                                                                               YOURC34
      RHOLIT(COL.11-20) , RHOHEV(COL.31-40), VISLIT(COL.51-50)
                                                                               YCDR035
С
ſ.
      VISHEV(COL.71-80)
                                                                               YCORU36
      READ(1.3)0V0, ALPHAD, WL , LENGTH
      UVD (CUL.11-20), ALPHAD(COL.31-40) , WE(COL.51-60)
                                                                               YCHRCPE
C
      WRITE(3,4) RHOLIT, RHOHEV, VISLIT, VISHEV, DVD, ALPHAC, WL
                                                                               ACOSC36
                                                                               YCORCAL
C
    4 FORMAT(/////BGB, BDENSITY OF UPPER PHASEB, F10.5, 3X, BDENSITY OF LOWEYCORDAL
     IP PHASE2, F10.5, / RCD, RVISCOSITY OF UPPER PHASE2, F12.7, 3X, RVISCOSITYYCOR 342
     2 OF LOWER PHASED, F12.7, / DOD, DORIGINAL OUTPUT VOLTAGED, F15.8, D MV. DYCORC43
     3,/000,01NITIAL DAMPING CUEFFICIENTO,F10.5,0 1/CM.0,/000,0WAVELENGT
     4H4+F8-5+# CM-21
      WAU = 6.28318 / WL
                                                                               YOURG46
      WRITE(3,800)LENGTH
  FURMAT(/a a, aPROBE SEPARATION = a, Flu.5, a CM.a)
      WRITE(3.5) WNO
                                                                               YOURC47
    5 FORMAT(//@ @, @WAVENUMBER = @, F12.6, @ RECIPRUCAL CM. a)
                                                                               YC08648
C
      READ IN THE ARRAYS OF EXPERIMENTAL DATA
ť,
C
  111 DO 113 J=1,101
      READ (1,114) VOLTS(1), FREQ(1), OV(1), GAMMA(1)
  114 FORMAT(4F10.0)
      VPTS = I - 1
      IF(VOLTS(I) +FREQ(I) +OV(I) +GAMMA(I)) 120,120,113
  113 CONTINUE
  120 WRITE(3,121)
  121 FURMAT(J14, T60, SINPUT DATA9/202, 2NO. 2, 26X, 2POL. VULTAGE2, 15K
     1 DFREQUENCYD, 11X, DOUTPUT VOLTAGE (MV. )D, 10X, 204MMAD)
      DO 130 I=1,NPTS
  131 FURMAT(2 2,13,8X,4F25.6)
  130 wRITE(3,131) [, VOLTS(]), FREQ(]), DV(]), GAMMA(])
      CALL AMPCOR(NPTS, FRE0, 0V)
      00 40 I= 1,NPTS
                                                                               YCCR086
C
                                                                               YCORC64
      UMEGA=6.2831852D0+FREO(I)
٢
      CALCULATE ALPHA, Y2, AND Y1 FROM EXPERIMENTAL DATA
C
C.
  S = (D1 + D2) * OMEGA**2 /(WND**3)
141 Y1EXP(I) = S/GAMM4(I)
ALPH4(I) = ALPHA0 + DLUG(UV0/OV(I)) *(1./LENGTH)
                                                                               YC08071
      Y2(I)=ALPHA(I) /WNO
                                                                               YC09073
```



```
с,
с,
                                CALCULATE EXPERIMENTAL GAMMA ASSUMING E=0
 Ċ
                                  KAPPA(I)= DCMPLX(WNU,ALPHA(I))
                                IM = \{0.00, 1.00\}
RE = (1.00,0.00)
                            RE = (1.n0,0.00)

M2 = CDSQRT(KAPPA(1)+2 - IM+UMEGA+D2/V2)

M1=CDSQRT(KAPPA(1)+2 - IM+UMEGA+01/V1)

A0 = -IM+UMEGA+(V1 + V2)+(C1 + U2)

A1 = 4.UU+V1+V2+M1+V2-M2+

A2 = 4.*(M1+V1+2 + M2+V2+2)

IVTEN([] = (-4.*V1+V2+KAPPA(1)+3 - A2*KAPPA(1)+2 - A1*KAPPA(1)

I - AGJ/((IM/UMEGA)+((V1+V2)+KAPPA(1)+2 - A1*KAPPA(1)

I - AGJ/((IM/UMEGA)+((V1+V2)+KAPPA(1)+2 + {(V1+M1+V2+M2)+2}

INTENS([] = INTEN(1)

ECXTRA(I) = (INTEN(1) - DCONJG(INTEN(1)))+(0.DC,-.5U2)

FXTRA(I) = ESXTRA(I)
 C,
                                CALCULATE COMPLEX E FROM EXPERIMENTAL DATA AND GAMMA DATA
ť,
c
                              A4 = [N+GAMMA([]+(V1 + V2)/OMEGA

A3 = (IM+(V1+M] + V2+M2)+GAHMA(I))/OHEGA + 4.+V1+V2

B0 = RE+(D1 + D2)

B1 = IM+(V1+M] + V2+M2)/OMEGA

H2 = IM+(V1 + V2)/OMEGA

H3 = -RE+GAMMA(I)/OMEGA+2

+ 4.+V1+V2)/OMEGA+2

+ 4.+V1+V2)/OMEGA+4

+ 4.+V1+V2

+ 4.+V2

+ 4.+V1+V2

+ 4.+V2

+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
+ 4.+V2
                          B3 = -RF+GAMMA(I)/OMEGA**2
ELAS(I)=-(IA4*KAPPA(I)**6 + A3*KAPPA(I)**3 + A2*KAPPA(I)**2 +
1 A1*KAPPA(I) + A0)/(B3*KAPPA(I)**3 + B2*KAPPA(I)**?
2 + B1*KAPPA(I) + B0))*KAPPA(I)**(-2)
RELAS(I) = ELAS(I)
CGELAS(I) = CELAS(I) -DCONJG(ELAS(I)))*(0.D0,-.5D0)
CELAS(I) = CCFLAS(I)
KV(I) = CELAS(I)/OMEGA
CONTINUE
                              CONTINUE
                  40
                CALL MODEL
READ(1.61)NEXT
61 FORMAT(11)
                                                                                                                                                                                                                                                                                                                                                                                                 YC68112
                                                                                                                                                                                                                                                                                                                                                                                                 YC04113
YC03114
                                  [F(NEXT)100,100,101
                                                                                                                                                                                                                                                                                                                                                                                                   YC03115
            100 STOP
                                                                                                                                                                                                                                                                                                                                                                                                  YCORILE
                                 END
                   SUBROUTINE AMPCOR(NPTS,FRE0,0V)

REAL+8 FREQU,Q(11),AMP(101),AMPO,CFRE0(101),OV(101),FREC(101)

1,XFREQ(50),XOV(50)

READ(1,1)FRE00

1 FURMAT(F10.0)

wRITE(3,5) FREQU

5 FURMAT(7)10,SINITIAL FREOUENCY = 0,F10.5)

KEAD(1,2)(0(1),[=1,11)

2 FURMAT(4020,13)

AMPU=0(1)
                               AMPU=Q(1)
+REQU=FREQU+0.0100
                      DO 3 L=2,11
3 AMPO=AMPO+O(L)+FREQU++(L-1)
                              00 11 J=1+NPTS
CFREQ(J)=FRFQ(J)+0.01D0
              LIRE(J)=(L)
AMP(J)=(L)
NO 4 L=2,11
4 AMP(J)=AMP(J) +Q(L)+CFREO(J)++(L-L)
(V(J)=CV(J)+(AMP(JAMP(J)))
11 CUNTINUE
                   WRITE (3,6)
6 FORMAT(//a 3,apulynomial coefficients of amplitude corrections)
D0 10 K=1,11
KK=K-1
                           WRITE(3,15) Q(K),KK
FORMAT(3 3,20X,D20.10,4X,3FREQUENCY++3,12)
            15 FORMAT(3 0,20x,D20.10,4x,0FREQUENCY**0,12)
16 CONTINUE
WRITE(3,20)
20 FORMAT(//0 0,0N.0,5x,0FREQUENCY0,5x,0CORRECTED OUTPUT VOLTAGE0,
110x,0NU.0,5x,0FREQUENCY0,5x,0CORRECTED OUTPUT VOLTAGE0)
N 2 = NPT5/2
D0 25 I=1,N2
N = I + N2
XFRF(I)=FREQ(N)
XOV(I) = OV(N)
21 FORMAT(I3,5x,FIC.5,9X,FI0.5,19X,I3,5X,FI0.5,9X,FIC.5)
25 WRITE(3,21)I,FREQ(I),OV(I),N,XFREQ(I),XOV(I)
RETURN
                             END
```

.

Figure 4 (Continued)

SUBROUTINE MODEL

C

```
COMPLEX*16CI,B(10),CC,CK,CK0,F
      COMPLEX*16 EMOD( 70),KAPPA(101),M1,M2,IM,RE,MODY1(70 ),U2(7C),
            U3(70), U4(70), CST(70), F1, F2, F3, F4, G3, G4, G5, XY, Z, F0
     1
      COMPLEX#16 KAP,XX,MO,MT,UT,UF,YY, DN,DF ,CIE,CKAPPA(70)
      COMPLEX*16 DCONJG, DCMPLX, CDSQRT
С
      REAL*8 DABS, DEXP, DSQRT , DLOG
      REAL*8 T, TT, TTT, X(10), Y(10), GMRT, DIT, COVO, COV, DZZ
      REAL *8 CWNO(70), ALFA(70), MY2(70), DC, DZ, BETA, FUNC, DFUNC, CDFUNC,
     LDTHE TA, AEX, REALE(70), OMEGA(70), CONC, VECM, BO, MUP, MUORG,
     2 THE TA(70), ST(70), MY1(70), CUMPE(70), CE(70), IE(70)
      REAL*8 VOLTS(70), KV(70), Y1EXP(70), Y2(70), GAMMA(70), FREQ(70),
              RELAS(70), CFLAS(70), ALPHA(70), WN0, D1, D2, V1, V2, INTENS(70)
     1
      REAL*8 TMID, TMAX, TMIN, FMAX, FMIN, FMID
C
      REAL*4 URG(5), ELECTR(5), XL(5), YL1(5), YL2(5), YL3(5), YL4(5),
            YL5(5), YL6(5), YL7(5)
     1
      REAL*4 YL8(5), YL9(5), YL10(5), YL11(5), YL12(5), YL13(5),
     1
              YL14(5),YL15(5),YL16(5),YL17(5),YL18(5),YL19(5),YL20(5),
              YL21(5),YL22(5),YL23(5)
     2
     1,YL24(5),YL25(5),YL26(5)
      REAL*4 YL28(5)
       REAL*4 VECML(5), BOL(5), MUPL(5), MUORGL(5), AEXL(5), BETAL(5),
     1
              GMRTL(5), DITL(5)
      REAL #4 YLU(5), YLT(5)
C
      COMMON KAPPA, VOLTS, Y1EXP, Y2, ALPHA, GAMMA, FREQ, INTENS, RELAS, CELAS,
              KV, V1, V2, D1, D2, WNO, ORG, ELECTR, NPTS
     1
      COMMON/POLZRO/CI, B, X, Y, LR, LW
1
      USE ALPHAMERIC DATA INITIALIZATION FOR GRAPH LABELS
ť
١.
      DATA YLO/DREFED, DRENCD, DE DAD, DTA D, D
                                                     37
            ,YLT/@EXPT@,@.CAL@,@C. W@,@ITH @,@E=O @/
     1
      HATA XL/@POL.@, @VOLT@, @AGE @, @VS. @, @SCE @/,
        YL28/aY2-Ca,aALC.a,aFROMa, a MODa,aEL
     1
                                                   a/.
     1
            YL1/@KFLV@, @IN F@, @UNCT@, @ION @, @
                                                     a/.
     1
            YL2/@EXPE@,@RIME@,@NTAL@,@ VAL@,@UE
                                                     a/,
            YL3/@Y1 -a, a MOD@, aEL +a, a EXPa, aER. a/,
     1
            YL4/@CALCƏ,ƏULATƏ,ƏED VƏ,ƏALUEƏ,Ə
     1
                                                     a/,
            YL5/@GAMM@,@A-MO@,@DEL @,@+ EX@,@PER.@/,
     1
     1
         YL6/DELECD, DTROCD, DAP. D, DDATAD, D
                                                 a/.
            YL7/@INTE@,@RFAC@,@IAL @,@TENS@,@ION @/,
     1
            YL8/DCALCa, a. ASa, aSUMIa, aNG Ea, a=0 a/,
     1
            YL9/@THEU@,@RY V@,@ALUE@,@FOR @,@E=0 @/,
     1
           YL10/ATHEDA, ARY VA, AALUEA, A, E=A, AINF. A/,
     1
           YL11/@RIPP@,@LE F@,@REQU@,@ENCY@,@-HZ.@/,
     1
     1
           YL12/@FREQ@,@UENC@,@Y AT@,@ CON@,@ST.K@/
     ł
         ,YL24/JSURFJ,JACE J,JCOVEJ,JRAGEJ,J
                                                   a/.
        YL25/@THET@, @A VS@, @.POL@, @.VOL@, @TAGE@/,
     1
     ł
        YL26/aFRUMa, a IDEa, aALIZa, aED Ma, aODELa/
      DATA YL23/aKV(Ka,a=CONa,aST)Va,aS. Va,aULTSa/,
     1
           YL13/aVS. a, aPOLAa, aRIZAa, aTIONa, a
                                                     a/.
           YL14/@Y2=A@,@LPHA@,@/WAV@,@E NO@,@.
     1
                                                     a/.
     1
           YL15/@Y2 V@, as. P@, dOL. @, @VOLT@, @AGE @/,
     1
           YL16/aSURFa, aACE a, aELASa, aTIC a, aMOD.a/,
           YL17/DE(K=0, aCONS0, aT) V0, aS. PO0, aL. V. a/,
     1
     Figure 4 (Continued)
```

```
YLIB/AREALA, & COMA, &PUNEA, ANT DA, AF E A/,
      1
             YL19/DIMAGD, DINARD, DY CUD, DMPUND, DENT D/,
      Ł
             YL20/GRE(E0,0)CAL0,0C.FR0,00M_M0,00DEL0/,
      L
             YL21/@IM(E@,@)CAL@, 3C.FR@, @OM M@, @ODEL@/,
      1
      1
             YL22/aKV-Sa, aURF.a, aRELAa, ax. PAa, aRAM.a/
Ľ.
r,
       READ(1,1)VECM, CUNC, B0, MUP, MUORG, AEX, BETA
     1 FORMAT(7F10.6)
       READ(1,700) GMRT,DIT
  700 FURMAT(F10.5,F10.2)
  100 CONTINUE
       WRITE(3,750)
  750 FURMAT(212,20X, 2INPUT DATA FOR MODELED BEHAVIOROMODIFIED FRUMKIN
      LISUTHERMO)
       WRITE(3,751)ORG, VECM, BETA, AEX, GMRT, DIT, MUP, MUORG, BO
  751 FURMAT(///@00, SURFACTANT CONCENTRATION= 0, 544, /000, DELECTRCCAPILL
      IARY MAXIMUM IS 0.F10.5.0 VOLTS VS. S.C.E.0./200.BFRUMKIN EXPONENT=
1 0.F10.5/000.0FLECTRICAL DESORPTION EXPONENT = 0.F10.5.
      1 JACA, BMAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 3,F10.

35,/202, DIFUSION TERM= 3,F10.2,/202, SURFACE VISCOSITY OF PURE IN

ITERFACE= 2,F8.6,/202,3SURFACTANT SURFACE VISCOSITY= 3,F8.6,

3/202,21/H0 = FRUMKIN CONCENTRATION CONSTANT=3,F10.6)
       IM = (0.00, 1.00)
       RE= (1.00,0.D0)
С
       DU 25 I=1,NPTS
       UMEGA(1)=6.281380000*FREQ(1)
с
С
       APPROXIMATE CALCULATION PROCEDURE FOR THETA BASED ON FRUMKIN
C
       ISOTHERM AND MODEL FOR POLARIZATION DEPENDENCE
C
       FMIN=0.000
       TMAX=0.99999900
       T=(CUNC/Go)+DEXP(-AEX+(VOLTS(I)-VECM)++2)
       FMAX=TMAX/(1.DO-TMAX) - T*DEXP(2.DO*BETA*TMAX)
FMIN=TMIN/(1.DO-TMIN) -T*DEXP(2.DO*TMIN*BETA)
       к=0
  H60 K=K+1
       TMID=(TMAX+TMIN)/2.00
       FMID=TMID/(1.DO-TMID) -I*DEXP(2.DO*BETA*TMIC)
       IF(([MAX-TMIN].LT.1.0-6) GO TO 301
       IF(FMID.LT.0.0D0) GU TO 806
       IF(FMID.GT.0.GDG) GU TO 805
       IF(FMID.60.0.D0) GD TO 301
       IF(K.GT.100) GU TO 900
  HUS IMAX=TMID
       FMAX=FMID
       60 TO 800
  PG6 IMIN=TMID
       FMIN=FMID
       60 10 800
  900 WRITE(3,901)
  901 FORMAT(@ @, @THETA CALCULATION DID NOT CONVERSED)
       CONTINUE
  301 THETA(I)= TMID
C
ņ
       CALCULATE MODELED ELASTICITY VALUES
ſ.
```

Figure 4 (Continued)

```
302 REALE(I)=2.D0*GMRT*BETA*THETA(I)**2 +GMRT*THFTA(I)/(1.CD-THFTA(I)
     1)
      IF (MUURS.LT.1.D-6.AND.MUP.LT.1.D-6) GO TO 320
      DZ=DLOG(MUORG)*THETA(I) + (1.DO-THETA(I))*DLOG(MUP)
      COMPE(I) =- UMEGA(I) + DEXP(DZ)
      50 TU 3.3
  320 COMPE(I)=J.D:
  303 CONTINUE
۱.
      SUBROUTINE ALSO CALCULATES DIFFUSION CORRECTION BASED ON MODEL
٢.
۱.
      DC= DIT *DEXP(AFX*(VOLTS(I)-VECM)**2 -2.DO*BETA*THETA(I))*
           (1.0C-2.DO*BETA*THETA(1) +2.DO*BETA*THETA(1)**2)/((1.0C-
     1
            THETA(1) + +2
     2
      IN = CDSQRT(KAPPA(I)*KAPPA(I) - IM*OMEGA(I)*1.D5)
      PF= 1.Bu + DN*IM*DC*1.D-5/UMEGA(I)
FMUD(I)= (RFALE(I) +IM*COMPE(I))/DF
      CE(1) = EMOD(1)
      CIE = -IM*(FMUD(I)-CE(I))
      IE(I)=CIF
   25 CONTINUE
C,
ſ
      CALCULATE ALPHA AND WNO USING POLZRO
С
      LR=1
      LW=3
      CI = IM
      ×(3)=V1
      x(4) = V2
      x(5)=D1
      ×(6)=D2
С
      00 80 I=1,NPTS
      X(7) = GAMMA(1)
      X(8) = UMFGA(1)
      (9) = CE(1)
      X(10) = IF(1)
      CK()=KAPPA(I)
      CALL PULZE (CK0,CK, ISTOP,F)
      CKAPPA(I)=CK
      CWNU(I)=CKAPPA(I)
      CC = -IM = (CKAPPA(F) - CWNU(I))
      ALEA(I)=CC
      MY2(I) = ALFA(I)/CWNO(I)
٢,
      CALCULATE MODELED YE AND GAMMA VALUES
١.
٢
      KAPPA(I) = CKAPPA(I)
      MI = CDSCRI(KAPPA(I)**2 - IM*OMEGA(I)*D1/V1)
      M2 = CDSQRT(KAPPA(I)**2 - IM*OMEGA(I)*02/V2)
      J≈I
      GAM=RE*GAMMA(J)
      U2(I) = FMOD(I) / GAM
      U3(I) = UMEGA(I)*(VI + V2*M2/KAPPA(I))/(GAM*KAPPA(I))
      XY= IM*(U2(I)*(U3(I)+U4(I))-4.D0*IM*U3(I)*U4(I))/(U2(I)-IM*(+3(I)+
     1 04([)))
      MUDY1(I) = Z - Z + XY
```

Figure 4 (Continued)

1 "#P15" 761 [URMATE 3][V5,110.5,15%,F10.5,18%,F10.6,17%,F10.6,9%,F10.7,1 #UT0%,ANT(2)] 762 [URMATE 3][V5,110.5,15%,F10.5,18%,F10.6,17%,F10.6,9%,F10.7,17] 8][V7%,ANT(2)][V0][V1][V1][V1][V1][V6[E3,0%,F10.6,17%,F10.6,117%,F1.5]] 8][V1][V1,76] 8][V1,76] -- - ----HRIATIF(1,76) 7/0 (NURATI-1,3,40).4,5%,30NL,VULTAGE3,9%,36AMMA(EXPT.)CALC.4-44 1 [1,7,10] TA FROM MUDEL3,14%,34CHAREXPEL13,40,400 411[1] 1,761][1] VULTS[1],14[LNS[1],THETATI],ALDHA(1],ALFAT]).1-1. 9,2074 tti TURN 1 ND PUT MIRIT AVAVALLAR IN VEHIMMENTC READE LUBEL FIRE SVELLAR OF STAVIAVA AND STATEST Figure In+OMFGA(1)*(D1+D2)*(V1*M1+V2*M2)
A+FWDD(1)*(V1+W2+M2)/OMEGA(1)
A+FWDD(1)*(V1+V2)/OMEGA(1)
A+FWDD(1)*(V1+V2)/OMEGA(1) 4 (Continued)

```
SUBROUTINE POLZR (CK0,CK+1STOP,F)
                              SUBROUTINE POLZR (CK0,CK,ISTOP,F)

REAL=8 KAPPA,KAPPO,ALPHA,ALPHG,X(10),Y(10),OABS

CUMPLEX=16 OCONJG,DCMPLX,COSGRT

COMPLEX=16 CK, CK0, F, FP, R(10),CI, FPP ,OCK

COMMON/POLZRO/CI.B,X,Y,LR,LW

CUTALP = 1./10.**8

CUTALP = 1./10.**8
                 1 STOP = 0
1 ISTOP = ISTOP + 1
                              (SIOP = 1510P + 1
CALL FNCALC(CKO,F,FP,FPP)
DCK=(-F/FP)*(1.+(F*FPP)/(2.*FP**2))
CK=CKO+DCK
53 CKO = CK

(0 TO 1

55 WRITFILM, 101)FP, F, ISTOP

1C1 FURMATIGEO,///G FIRST DERIVATIVE OF POLYNUMIAL IS TOU CLOSE (0

1 ZERU.FP = 3.2616.7, //JTHE POLYNOMIAL = 3.2616.7,//J THEJ

2JITFARTION NUMBER IS 0,63)

STOP

STOP

400 REFURM
                            END
                    SUBRUUTINE FNCALC(CK,F,FP,FPP)

COMPLEX=16 (1 .CK,C(5),D(7),F,FP,FPP,CP5,CPP5,CP1,CPP1,DP7,

LDP2,CP1,CP1,E,G,U(10)

REAL=8 X(10),Y(13)

COMMUX/P0,ZR1)/C1,R,X,Y,LR,L4

CALL CCOFF(CK,C,D)

5=(1,=900,=(X15)=X(6))/(X(7)=CK ==2))

E=DCMPLX(X(9),X(10))

F=C(1)=X(7)=G=E+D(1)=E+D(2)=X(7)=G+C(5)

CP5= 3.=81(5)=CK+22.81(6)=CKK+B(7)

CP5= 5.=81(5)=CK+22.81(6)=CKK+B(7)

CP5= 5.=81(5)=CK+22.81(6)=CKK+B(7)

CP5= 4.=81(2)=CK=333.8R(3)=CK+22.2.81(4)=CK

CP1= 12.=8(2)=CK=333.8R(3)=CK+22.2.81(4)=CK

CP1= 12.=8(2)=CK=333.8R(3)=CK=22

DP2=12.=8(2)=CK=24.61(3)=CK

CP1= 5.=81(1)=CK=44

CP1= 5.=81(1)=CK=45

FP= CP1=X(7)=G=E+DP1=E+DP2=X(7)=G+CP5

FPP= CP1=X(7)=G=E+DP1=E+DP2=X(7)=G+CP5

FPD= CP1=X(7)=G=E+DP1=E+DP2=X(7)=G+CP5

FND
                            END
                           SUBRUUTINF COEF(CK)

FAL=8 X(10),Y(13)

CUMPLEX=16 DCUNJG,DCMPLX+CDSQRT

CUMPLEX=16 CT,P(TC),CK+CPUCMP,CPUCM

CUMP(J=CDSQRT(IX1)=CK)=*2 - CT+X(5)=X(A]=X(3))

CMUCMP =CDSQRT(IX(3)=CK)=*2 - CT+X(6)=X(A]=X(3))

CMUCMP =CDSQRT(IX(3)=CK)=*2 - CT+X(6)=X(A]=X(3))

CMUCMP =CDSQRT(IX(3)=CK)=*2 - CT+X(6)=X(A]=X(A))

ST(1) = CT+X(3)=*2

ST(1) = CT+X(3)=X(4)

ST
                                 PETURN
                              END
                            ı
                              RETURN
                            Figure 4 (Continued)
```

```
//BC17CALB_JUB_040087,TIME=2,SI7E=128K0,GORDON,MSGLEVEL=1
//STEPUNE_EXEC_FURIG
//FURI.SYSIN_DD_=
       PROGRAM FOR FITTING CURVE OF AMPLITUDE(FEQUENCY) DEPENDENCE OF
C.
                                                                                         1
      WAVE GENERATING PROBE OF INTERFACIAL RIPPLE APPARATUS
DESCRIPTION OF NECESSARY DATA CARDS FOLLOWSC
C.
                                                                                         з
C
         CARD 1: NPARTS = NO. UF SECTIONS OF CURVE (COL.1-2)
                                                                                         4
C.
         CARD 2: NPTS: NO. OF POINTS IN SECTION J (J=1, APTS) (COL.1-2)
INTS: IF PTS. NUT WEIGHTED, LEAVE COL.3-4 BLANK
                                                                                         5
C
C
                                                                                         h
                         IF PTS. WEIGHTED, PUT POSITIVE INTEGER IN CUL. 3-4
                                                                                         7
c
         CARDS 3 TO(NPTS+2) : DATA OFREQUENCY COL.1-10, AMPLITUDE CUL.51-60
                                                                                         н
c
                               IF PTS. WEIGHTED , WT. OF PT. 14 CCL.71-80
                                                                                         9
                                                                                        1 C
C.
        REPEAT CARDS 2 TO NPTS+2 FOR EACH SECTION OF CURVE (NPARTS)
C,
                                                                                        11
C.
                                                                                        12
£
                                                                                        13
      REAL*8 X(75),Y(75),W(75),Q(11),RES(75),ERROR(75),REST
                                                                                        14
             ,STDEV(10),DSQRT,SUM,FMIN ,Z
     1
                                                                                        15
C
                                                                                        16
      READ(1,60) NPARTS
                                                                                        17
   60 FORMAT(12)
                                                                                        12
C.
                                                                                        19
      DO 10 I=1,NPARTS
                                                                                        20
      WRITE(3,1)1
                                                                                        21
    1 FURMAT(ala,20X, aCURVE SECTION NG. = 0,12)
                                                                                        22
t.
                                                                                        23
                                                                                        24
C
                                                                                        25
      READ(1,2)NPTS, IWTS
    2 FURMAT(212)
                                                                                        26
                                                                                        27
      IF(IWTS)15,15,16
   16 READ(1,3)(X(J),Y(J),W(J),J=1,NPTS)
                                                                                        20
    3 EORMAT(FL0.0,10X.F10.0,10X,F10.0)
                                                                                        29
                                                                                        30
      60 f0 18
   15 DO 100 J=1,NPTS
                                                                                        31
  106 W(J)=1.000
                                                                                      51.6
      READ(1,4)(X(J),Y(J),J=1,NPTS)
                                                                                       32
    4 FURMAT(F10.0,1CX,F10.0)
                                                                                        43
   18 CONTINUE
                                                                                        ÷4
      00 500 J=1:NPTS
  500 X(J)=0.0100+X(J)
ι.
                                                                                        35
٢.
                                                                                        36
      TUWYLO = 0.0
                                                                                        37
       WRITE(2,9) 1
                                                                                        38
    9 FURMATIGPULYNUMIAL COEFFICIENTS OF SECTION 2,12)
                                                                                        13
C
                                                                                        40
      DU 25 NDEG=1,10
      CALL OPLSPA(NDEG, NPTS, X, Y, W, O, TUWYLO)
                                                                                       42
      TUWYLO=1.0
                                                                                       43
      WRITE(3,5)NDEG
                                                                                        44
    5 FURMAT(///@ @.15X.@COEFFICIENTS OF @.12.@ TH DEGREE FIT IN ASCENDE
                                                                                        45
     ING POWERS OF THE FREQUENCYD)
                                                                                        46
      NDEG1=NDEG+1
      DO 200 K=1,NDEG1
      NN = K - 1
      WRITE(3,7)Q(K),NN
    7 FURMAT(@ 0,20X,D20.10,4X, @FREQUENCY++3,12)
                                                                                       48
  200 CUNTINUE
C
                                                                                       49
 Figure 5. CALB listing
```

		WRITE(2,8)NDFG	
	8	FURMAT(@CUEFFICIENTS UF @,12,@ TH DEGREE FIT2)	51
t.		wRITE(2.6)(Q(K),K=1.NDEG1)	53
	ь	FURMAT(4020.10)	54
С			55
۱ <u>.</u> ۲			50
č		EVALUATE POLYNOMIAL AND COMPARE TO INPUT DATA	
C.			=, a
		SUM = 0.0	60
	12	WYLIELSELZE FORMATEZZZA ALEGY, AFREDUENCY Y GLOIA, 7Y.AFYPERIMENTAL AMPLITURE:	e í
		1,10X, aCALCULATED AMPLITUDEa,10X, aERRORa)	
С			64
		DO 11 J=1,NPTS	65
		NCS(J)= 0(1) DD 1001 1=2.NDFG1	
		<pre>XES(J) = XES(J) +()(L) +X(J) ++(L-1)</pre>	
1	001	CONTINUE	
		$\frac{1}{2} \frac{1}{2} \frac{1}$	68
	13	FURMAT(10X+F10+5+22X+F10+5+15X+F10+5+15X+F1C+5)	70
	•	SUM=SUM + ERROR(J)++2	71
-	11	CONTINUE	12
r			73
ί.		3102 4 (402 0) - 103 (K) (30 0) (MF13-MD20-1))	75
		WRITC(3,14) STDIV(NDEG)	76
	14	FORMAT(///@ @,@STANDARD DEVIATION= @,F11.8)	77
r	25	LUNIINUL	75
с.		FIND FIT WHICH GIVES SMALLEST STANDARD DEVIATION	sé
C			-1
		FMIN = STDEV(5)	52
		00 35 L=6,10	÷4
		IF(STDEV(L) .LT. FMIN) GO TO 40	. 5
		50 F0 3C	56
	40	+M(N) = S(D)(V(L))	5.7
	30	CONTINUE	
C			·? D
	50	WRITE(3,50)M,STCTV(M)	-11
	- 5 C 1	(ON = 0.F11.R)	· / 2 . j 2
(,	•	n n na hanna n	1.24
	1 C	CONTINUE	155
		STOP END	1.56
		- F + 4 4 7	1.07

Figure 5 (Continued)

COUBLE PRECISION X(1), Y(1), W(1) CULSPACE FOUDBLE PRECISION C(1), PN(21), PN1(20), SUM(4), B, C, PNX, 1HP JPLSPACE IF (TUWYLO) 2,1,2 UPLSPACE 1 %=0 UPLSPACE C=0, UPLSPACE PN(1)=1.0 UPLSPACE UI TO 6 UPLSPACE 2 C=-SUM(3)/SUM(4) UPLSPACE 3 ha=SUM(1)/SUM(4) UPLSPACE SUM(4)=SUM(3) UPLSPACE VM(1)=1.0 UPLSPACE SUM(4)=SUM(3) UPLSPACE VM(1)=1.0 UPLSPACE SUM(4)=SUM(3) UPLSPACE VM(1)=1.0 UPLSPACE SUM(4)=SUM(3) UPLSPACE VM(1)=1.0 UPLSPACE VM(1)=1.0 UPLSPACE VM(1)=2.0 UPLSPACE VM(1)=1.0 UPLSPACE VM		SUBROUTINE OPLSPA (NDEG,NPTS,X,Y,W,Q,TUWYLO)	UPL SPAC1
IF (TUWYLO) 2,1,2 UPLSPA:4 I 4=0 UPLSPA:4 C=0. UPLSPA:4 PN(1)=1.0 UPLSPA:5 C=0. UPLSPA:4 PN(1)=1.0 UPLSPA:5 C=0. UPLSPA:4 PN(1)=1.0 UPLSPA:5 C=-SUM(3)/SUM(4) UPLSPA:5 Sum(4)=SUM(3) UPLSPA:5 VM(N=1)=0. UPLSPA:5 PN(N+1)=7. UPLSPA:5 VM(N+1)=7. UPLSPA:5 MP=PN(J) UPLSPA:5 VM(N=1)=1.N UPLSPA:5 VM(1)=1.N UPLSPA:5 UPLSPA:5 UPLSPA:5		COUBLE PRECISION X(1), Y(1), W(1)	UPLSPAC2
IF (IOPLSPA) (DPLSPA) 1 N=0 (DPLSPA) C=0. (DPLSPA) PN(1)=1.0 (DPLSPA) 10 0 (DPLSPA) 2 C=-SUM(3)/SUM(4) (DPLSPA) 3 b=-SUM(1)/SUM(3) (DPLSPA) SUM(4)=SUM(3) (DPLSPA) SUM(4)=SUM(3) (DPLSPA) N=N+1 (DPLSPA) N(N+1)=7. (DPLSPA) N(1 4)=1.N (DPLSPA) N(1 5)=1.N (DPLSPA) <td< td=""><td></td><td>FOURLE PRECISION CTI), PN(21), PNI(20), SUM(4), B, C, PNX, TAP</td><td>JPLSP4C3</td></td<>		FOURLE PRECISION CTI), PN(21), PNI(20), SUM(4), B, C, PNX, TAP	JPLSP4C3
1 M=0 UPLSPA:5 C=0. UPLSPA:5 VM(1)=1.0 UPLSPA:3 UD TO 6 UPLSPA:3 2 C=-SUM(3)/SUM(4) UPLSPA:3 3 b=-SUM(1)/SUM(3) UPLSPA:3 SUM(4)=SUM(3) UPLSPA:4 N=N+1 UPLSPA:3 N=N+1 UPLSPA:4 N(N+1)=7. UPLSPA:4 PN(N+1)=7. UPLSPA:4 PN(1)=5. UPLSPA:4 PN(1)=5. UPLSPA:4 UD 0 5 J=1.N UPLSPA:4 SPN(S)=1.N UPLSPA:5 UD 1 I I=1.NPTS UPLSPA:5 PNX=1.C UPLSPA:5 SPNX=1.C UPLSPA:4 SUM(1)=SUM(1)+W(1)*X(1)*PNX*PNX UPLSPA:5 SUM(1)=SUM(1)+W(1)*X(1)*PNX*PNX UPLSPA:5		IF (TUWYLO) 2,1,2	UPLSPA:4
C=0. UPLSPACE PN(1)=1.0 UPLSPACE C=5.0m(1)/SUM(4) UPLSPACE 3 b=-SUM(1)/SUM(4) UPLSPACE SUM(4)=SUM(3) UPLSPACE N=N+1 UPLSPACE PN(N)=0. UPLSPACE PN(N)=0. UPLSPACE PN(N)=0. UPLSPACE PN(N)=1=r. UPLSPACE PN(1)=1=N UPLSPACE PN(1)=1=N(1) UPLSPACE <td>1</td> <td>N= 0</td> <td>UPLSPAJS</td>	1	N= 0	UPLSPAJS
PN(1)=1.0 UPLSPA39 0:0:10:6 UPLSPA39 2:C=-SUM(3)/SUM(4) UPLSPA33 3:b=-SUM(1)/SUM(3) UPLSPA13 SUM(4)=SUM(3) UPLSPA13 N=N+1 UPLSPA13 N=N+1 UPLSPA13 N=N+1 UPLSPA14 N=N+1 UPLSPA13 PN(N+1)=7. UPLSPA14 N(N+1)=7. UPLSPA15 N=N(N+1)=7. UPLSPA14 N(N+1)=7. UPLSPA15 N=N(N+1)=7. UPLSPA14 N(N+1)=7. UPLSPA15 N=N(N+1)=7. UPLSPA15 N(N+1)=7. UPLSPA15 N(N+1)=7. UPLSPA15 N(N+1)=7. UPLSPA15 N(1)=80N(1)+C=PN1(1) UPLSPA15 N(1)=1=N UPLSPA15 D0:5 J=1.N D0:5 J=1.N D0:5 J=1.N D0:5 J=1.N D0:1 I=1.NPTS PNX=PN(J)+PNX*VI UPLSPA25 D0:1 I<1.SUM(1)+VI(1)=NX(1)=PNX*PNX		G=0.	OPL SPAGG
C0 T0 6 OPESPAGE 2 C=-SUM(1)/SUM(4) OPESPAGE 3 b=-SUM(1)/SUM(3) UPESPAGE SUM(4)=SUM(3) OPESPAGE N=N+1 UPESPAGE PN(N)=0. UPESPAGE PN(N)=1=1.N UPESPAGE PN(N)=1=1.N UPESPAGE PN(N)=1=1.N UPESPAGE PN(N)=1=1.N UPESPAGE PN(N)=1=1.N UPESPAGE D0 5 J=1.N UPESPAGE D0 5 J=1.N OPESPAGE D0 5 J=1.N OPESPAGE D0 5 J=1.N OPESPAGE D0 7 K=1.3 OPESPAGE D0 11 I=1.NPTS OPESPAGE PNX=1.C UPESPAGE J=N JPESPAGE PXX=1.C UPESPAGE J=N JPESPAGE PXX=PN(J)+PXX*(I) UPESPAGE J=N JPESPAGE SUM(1)=SUM(1)+N(I)*X(I)*PNX*PNX UPESPAGE GD T0 8 GPESPAGE GPESPAGE GD T0 8 GPESPAGE GPESPAGE SUM(2)=SUM(2)+W(I)*Y(I)*PNX GPESPAGE GPESPAGE GD T0 8 GPESPAGE GPE		PN(1)=1.0	OPL SPA 27
2 C=-SUM(3)/SUM(4) OPLSPA:3 3 b=-SUM(1)/SUM(3) UPLSPA:1 SUM(4)=SUM(3) UPLSPA:1 N=N+1 UPLSPA:2 PN1(N)=0. UPLSPA:4 D0 4 J=1.N UPLSPA:4 D0 4 J=1.N UPLSPA:4 D0 4 J=1.N UPLSPA:4 D0 5 J=1.N UPLSPA:4 D0 5 J=1.N UPLSPA:4 D0 5 J=1.N UPLSPA:4 D0 7 K=1.3 UPLSPA:4 D0 1 1 T=1.NPTS UPLSPA:4 D0 1 1 T=1.NPTS UPLSPA:4 D0 7 K=1.3 UPLSPA:4 SUM(K)=u.6 UPLSPA:4 J=N UPLSPA:4 D0 1 1 T=1.NPTS UPLSPA:4 D0 2 PNX=PN(J)+PNX*X(1) UPLSPA:4 J=N UPLSPA:4 SUM(K)=u.6 UPLSPA:4 SUM(1)=SUM(1)+W(T)*X(1)*PNX*PNX UPLSPA:4 SUM(2)=SUM(2)+W(T)*Y(1)*PNX*PNX UPLSPA:4 UPLSPA:4 UPLSPA:4 UPLSPA:5 UPLSPA:4 UPLSPA:5 UPLSPA:5 UPLSPA:5 UPLSPA:5 UPLSPA:5 UPLSPA:5 UPLSPA:5	_	60 TO 6	OPLSPAUS
3 hs=-SUM(1)/SUM(3) UPLSPA12 SUM(4)=SUM(3) UPLSPA13 N=A+1 UPLSPA13 PN1(N)=0. UPLSPA13 PN(N+1)=7. UPLSPA13 PN(N+1)=7. UPLSPA16 PN(N+1)=7. UPLSPA16 PN(N+1)=7. UPLSPA16 PN(N+1)=7. UPLSPA17 PN(N+1)=7. UPLSPA17 PN(1)=7. UPLSPA17 PN(1)=7. UPLSPA16 PN(1)=7. UPLSPA17 PN(1)=7. UPLSPA17 PN(1)=7. UPLSPA17 PN(1)=7. UPLSPA17 OD 5 J=1.N UPLSPA17 OD 5 J=1.N UPLSPA17 OD 5 J=1.N UPLSPA17 OD 7 K=1.3 UPLSPA20 OD 11 I=1.NPTS UPLSPA21 PNx=1.C UPLSPA23 J=N UPLSPA24 J=N UPLSPA25 SUM(1)=NX+NX*X(1) UPLSPA26 j=J=1 UPLSPA25 j=J=1 UPLSPA25 j=J=1 UPLSPA25 j=J=1 UPLSPA25 j=J=1 UPLSPA26	?	C = -SUM(3)/SUM(4)	OPUSPACE
SUM(4) = SUM(3) (?) LSPA11 N=N+1 UPLSPA12 PN1(N) = 0. UPLSPA13 PN(N+1) = 7. UPLSPA14 DU 4 J=1.N UPLSPA15 IMP=PN(J) UPLSPA16 PN(1) = R+PN(J) + C + PN1(J) UPLSPA17 4 PN1(J) = R+PN(J) + C + PN1(J) UPLSPA17 5 PN(J+1) = PN(J+1) + PN1(J) UPLSPA17 6 D0 5 J=1.N UPLSPA17 5 PN(J+1) = PN(J+1) + PN1(J) UPLSPA17 6 D0 7 K = 1.3 UPLSPA17 7 SUM(K) = u.6 UPLSPA22 D0 11 I = 1.NPTS UPLSPA23 PNX = 1.6 UPLSPA24 J=N UPLSPA25 8 IF (J) 1C.10.9 UPLSPA26 9 PNX = PN(J) + PNX *X(1) UPLSPA28 J=J 1 UPLSPA28 ·0 T U B UPLSPA28 ·0 T U B UPLSPA28 ·0 T U B UPLSPA28 ·0 U L SPA29 UPLSPA28 ·0 U L SPA29 UPLSPA28 ·0 U L SPA29 UPLSPA28 ·0 U D S UPLSPA28 ·0 U L SPA29 UPLSPA28 ·0 U L SPA29 UPLSPA28 <td>3</td> <td>h=-SUM(1)/SUM(3)</td> <td>UPLSPAIC</td>	3	h=-SUM(1)/SUM(3)	UPLSPAIC
N=N+1 UPLSPA12 PN1(N)=0. UPLSPA13 PN1(N+1)=7. UPLSPA14 DU 4 J=1.N UPLSPA15 TMP=PN(J) UPLSPA16 PN(J)=B+PN(J)+C+PN1(J) UPLSPA17 0D 5 J=1.N UPLSPA19 0D 5 J=1.N UPLSPA17 0D 5 J=1.N UPLSPA17 0D 5 J=1.N UPLSPA19 0D 5 J=1.N UPLSPA12 0D 5 J=1.N UPLSPA12 0D 5 J=1.N UPLSPA22 0D 11 I=1.NPTS UPLSPA23 PNX=1.C UPLSPA24 J=N UPLSPA25 9 PNX=PN(J)+PNX*X(1) UPLSPA26 J=N UPLSPA26 9 PNX=PN(J)+PNX*X(1) UPLSPA26 10 D B UPLSPA26 11 SUM(1)=SUM(1)+W(1)*X(1)*PNX*PNX UPLSPA31 12 SUM(1)=SUM(1)+W(I)*X(I)*PNX UPLSPA32 13 C(J)=C(J)+C(M+1)*PN(J) UPLSPA36 14 KETUBA UPLSPA36		SUM(4)=SUM(3)	CPUSPAII
PN1(N)=0. JPLSPA14 PN(N+1)=1. UPLSPA16 PN(N+1)=1.N UPLSPA16 PN(J)=0. UPLSPA17 PN(J)=0. UPLSPA16 PN(J)=0. UPLSPA17 PN(J)=0. UPLSPA16 UPLSPA17 UPLSPA17 PN(J)=0. UPLSPA17 00 5 J=1,N 00 5 J=1,N 00 5 J=1,N 00 5 J=1,N 00 7 K=1,3 00 11 I=1,NPTS 00 11 I=1,NPTS 00 11 I=1,N 00 11 I=1,N 00 11 I=1,N 00 11 I=1,NPTS 00 11 I=1,N 01 IPLSPA22 01 IPLSPA23 10 IPLSPA24 11 SUM(1)=NX*(1) 12=N UPLSPA23 13 SUM(2)=SUM(1)+W(1)=NX*PNX 14 UPLSPA35 15 SUM(1)=SUM(1)+W(1)=NX*PNX 14 UPLSPA34 15 UPLSPA35 16 U		N=N+1	UPLSPA12
PN(N+1)=7. UPLSPA15 D0 4 J=1,N UPLSPA16 TMP=PN(J) UPLSPA17 PN1(J)=RMP UPLSPA17 00 5 J=1,N UPLSPA19 00 7 K=1,3 UPLSPA17 7 SUM(K)=u.6 UPLSPA22 00 11 I=1,NPTS UPLSPA23 PNx=1.6 UPLSPA24 J=N UPLSPA25 8 IF (J) 1C,10,9 UPLSPA26 9 PNx=PN(J)+PNX*X(I) UPLSPA27 J=J-1 UPLSPA26 :0 TU 8 (PLSPA26 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX UPLSPA27 U(N+1)=SUM(2)+W(I)*PNX*PNX UPLSPA31 11 SUM(3)=U(1)+W(I)*PNX*PNX UPLSPA32 :0 TU 8 (PLSPA31 :0 U(1)=SUM(2)+W(I)*PNX*PNX UPLSPA32 :0 U(1)=SUM(2)+W(I)*PNX*PNX UPLSPA33 :1 SUM(3)=U(2)+W(I)*PNX*PNX UPLSPA33 :1 SUM(3)=U(2)+W(I)*PN(J) UPLSPA34 :2 00 I 3 J=1,N UPLSPA35 :3 (J)=Q(J)+Q(N+1)*PN(J) UPLSPA35 :4 KETURA UPLSPA35		PMI(N)=0.	JPL SPA13
D0 4 J=1,N UPL SPA16 TMP=PN(J) UPL SPA16 PN(J)=B+PN(J)+C+PN1(J) UPL SPA17 00 5 J=1,N UPL SPA19 5 PN(J+1)=PN(J+1)+PN1(J) UPL SPA22 6 D0 7 K=1,3 UPL SPA22 0 11 I=1,NPTS UPL SPA23 PNx=1.C UPL SPA24 J=N UPL SPA25 8 IF (J) 1C,10,9 UPL SPA25 9 PNx=1.C UPL SPA26 -9 PNx=PN(J)+PNX*X(1) UPL SPA26 -9 PNX=PN(J)+PNX*X(1) UPL SPA26 -9 UT 0 B UPL SPA27 -9 UT 0 B UPL SPA26 -9 UT 0 B UPL SPA27 -9 UT 0 B UPL SPA28 -9 UT 0 B UPL SPA32 -9 UT 0 B UPL SPA31 -9 UT 0 B UPL SPA32 -9 UT 0 B UPL SPA33 11 SUM(1)=SUM(1)+W(I)=PNX UPL SPA33 12 SUM(2)-SUM(3) UPL SPA33 13 GUL 2)-SUM(3) UPL SPA34 14 C(J)=Q(J)+Q(N+1)=PN(J) UPL SPA35 </td <td></td> <td>PN(N+1)=7.</td> <td>UPESPA14</td>		PN(N+1)=7.	UPESPA14
TMP=PN(J) UPLSPA10 PN(J)=8*PN(J)+C*PN1(J) 0PLSPA17 PN1(J)=TMP UPLSPA19 005 J=1,N 5 PN(J+1)=PN(J+1)+PN1(J) 6 007 K=1,3 7 SUM(K)=U+0 UPLSPA22 0011 T=1,N 0PLSPA22 0011 T=1,NPTS 0PLSPA23 PNX=1+C UPLSPA24 UPLSPA24 J=N UPLSPA25 UPLSPA25 8 IF (J) 10,10,9 UPLSPA26 9 PNX=1+C UPLSPA26 UPLSPA24 J=N UPLSPA25 UPLSPA25 UPLSPA26 9 PNX=1+C UPLSPA26 UPLSPA26 9 PNX=1+C UPLSPA26 UPLSPA27 10 1C,10,9 UPLSPA26 UPLSPA27 10 1C,10,9 UPLSPA27 UPLSPA26 10 1C,10,9 UPLSPA26 UPLSPA27 11 SUM(1)=SUM(1)+W(1)*X(I)*PNX*PNX UPLSPA32 UPLSPA32 11 SUM(2)=SUM(2)+W(I)*PNX*PNX UPLSPA32 UPLSPA33 12 UPL		$DD = 4 = 1 \cdot N$	UPLSPA15
PN(J)=B*PN(J)+C*PN1(J) OPLSPA17 PN1(J)=TMP OPLSPA19 D0 5 J=1,N OPLSPA19 5 PN(J+1)=PN(J+1)+PN1(J) OPLSPA20 6 D0 7 K=1,3 OPLSPA21 7 SUM(K)=U+0 OPLSPA22 D0 11 T=1,NPTS OPLSPA23 PNx=1.6 OPLSPA24 J=N OPLSPA23 PNx=1.6 OPLSPA24 J=N OPLSPA24 SUM(K)=U+0 OPLSPA24 J=N OPLSPA24 J=N OPLSPA24 J=N OPLSPA25 8 IF (J) 1C,10,9 OPLSPA26 9 PVx=PN(J)+PNX*X(I) OPLSPA26 -j0 TU 8 OPLSPA27 -j0 TU 8 OPLSPA31 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX OPLSPA31 SUM(2)=SUM(2)+W(I)*Y(I)*PNX OPLSPA32 -j0(n+1)=SUM(2)/SUM(3) OPLSPA32 -j0(n+1)=SUM(2)/SUM(3) OPLSPA32 -j0(n+1)=SUM(2)/SUM(3) OPLSPA34 -j1 OPLSPA35 -j1 OPLSPA35 -j1 OPLSPA35 -j1 OPLSPA35 -j1<0(J)=Q(J)+Q(N+1)*PN(J)		TMP= PN(J)	UPESPAlo
4 PN1(J)=TMP OPLSPA19 00 5 J=1,N OPLSPA19 5 PN(J+1)=PN(J+1)+PN1(J) OPLSPA20 OPLSPA22 6 0.0 7 K=1,3 OPLSPA21 7 SUM(K)=u.6 OPLSPA22 OPLSPA22 10 11 I=1,NPTS OPLSPA24 9 PNX=1.6 OPLSPA24 J=N OPLSPA24 OPLSPA25 8 IF (J) 1C,10,9 OPLSPA26 9 PNX=PN(J)+PNX*X(I) UPLSPA26 OPLSPA26 -j=J=1 OPLSPA27 OPLSPA26 -jO FU 8 (PLSPA26 -jO TU 8 OPLSPA26 OPLSPA26 -jO FU 8 (PLSPA26 -jO TU 8 OPLSPA31 OPLSPA31 11 SUM(1)=SUM(1)+W(I)*X(I)*PNX OPLSPA31 OPLSPA32 -j(N+1)=SUM(2)/SUM(3) OPLSPA35 OPLSPA34 OPLSPA34 12 IA J=1,N OPLSPA35 OPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) OPLSPA36 OPLSPA36		PN(J}=8*PN(J)+C*PN1(J)	OPLSPA17
00 5 J=1,N JPLSPA19 5 PN(J+1)=PN(J+1)+PN1(J) OPLSPA21 6 00 7 K=1,3 OPLSPA21 7 SUM(K)=u.0 OPLSPA22 00 11 I=1,NPTS OPLSPA23 PNx=1.0 OPLSPA24 J=N OPLSPA24 J=N OPLSPA24 J=N OPLSPA25 9 PNx=PN(J)+PNX*X(1) OPLSPA26 J=J=1 OPLSPA28 -j0 FU 8 OPLSPA28 SUM(1)=SUM(1)+W(1)*X(1)*PNX*PNX OPLSPA34 SUM(2)=SUM(2)+W(I)*Y(1)*PNX OPLSPA31 11 SUM(3)=SUM(3)+W(I)*PNX+PNX OPLSPA33 12 SUM(2)/SUM(3) GPLSPA34 13 G(J)=Q(J)+Q(N+1)*PN(J) GPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) GPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) GPLSPA35 14 RETURA GPLSPA38	- 4	PN1(J)=FMP	UPL SPA18
5 PN(J+1)=PN(J+1)+PN1(J) OPLSPA20 6 0.0 7 K=1,3 OPLSPA21 7 SUM(K)=U.6 OPLSPA22 OPLSPA22 00 11 I=1,NPTS OPLSPA23 PNX=1.6 OPLSPA24 OPLSPA24 J=N OPLSPA25 OPLSPA26 9 PNX=PN(J)+PNX*X(1) OPLSPA26 -30 TO B OPLSPA26 -30 TO B OPLSPA26 -30 TO B OPLSPA27 -30 TO B OPLSPA36 -30 TO B OPLSPA36 -30 TO B OPLSPA36 -30 TO B OPLSPA36 -31 SUM(1)=SUM(1)+W(1)*PNX OPLSPA36 -31 SUM(2)=SUM(2)/SUM(3) OPL		DD 5 J=1+N	OPL SPA19
6 0.0 7 K=1+3 0.0 + L \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5	PN(J+1)=PN(J+1)+PN1(J)	OPL SP420
7 SUM(K)=u+G GPLSPA22 00 1 I=1,NPTS GPLSPA23 PNX=1+G GPLSPA24 J=N J=N JPLSPA25 GPLSPA26 9 PNX=PN(J)+PNX*X(1) UPLSPA26 j=J=1 GPLSPA28 GPLSPA28 -0 TU 8 GPLSPA28 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX GPLSPA32 SUM(2)=SUM(2)+W(I)*Y(I)*PNX*PNX GPLSPA31 11 SUM(3)=SUM(3)+W(I)*PNX*PNX GPLSPA32 -0(n+1)=SUM(2)/SUM(3) GPLSPA32 -1(N) 3,3,12 GPLSPA34 12 OD I3 J=1,N GPLSPA34 13 G(J)=Q(J)+Q(N+1)*PN(J) GPLSPA37 14 HETURA GPLSPA38	- 6	(10, 7, K=1, 3)	OPLSPA21
00 11 I=1,NPTS 0PLSPA23 PNx=1.C 0PLSPA24 J=N 0PLSPA25 8 IF (J) 1C,10,9 0PLSPA26 9 PNx=PN(J)+PNX*X(1) 0PLSPA26 j=J=1 0PLSPA26 :0 TU 8 0PLSPA23 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX 0PLSPA31 10 SUM(2)=SUM(2)+W(I)*Y(I)*PNX 0PLSPA31 11 SUM(2)/SUM(3)+W(I)*PNX 0PLSPA32 :0(n+1)=SUM(2)/SUM(3) 0PLSPA34 :12 OD I3 J=1,N 0PLSPA35 :13 G(J)=Q(J)+Q(N+1)*PN(J) 0PLSPA35 :14 KETURA 0PLSPA33	7	SUM(K)=:	GPLSPA22
PNX=1.C (PLSPA24 J=N JPLSPA25 R IF (J) 10,10,9 (PLSPA26 9 PNX=PN(J)+PNX*X(1) UPLSPA27 J=J=1 (PLSPA28 -0 T0 B (PLSPA23 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX OPLSPA3 SUM(2)=SUM(2)+W(I)*Y(I)*PNX OPLSPA3 11 SUM(3)=SUM(3)+W(I)*PNX*PNX OPLSPA3 -0 T0 B (PLSPA28 -0 T0 B (PLSPA29 12 SUM(1)=SUM(1)*Y(I)*PNX OPLSPA3 13 SUM(3)=SUM(3)+W(I)*PNX*PNX OPLSPA34 14 C(N) 3,3,12 0PLSPA35 15 G(J)=Q(J)+Q(N+1)*PN(J) OPLSPA35 16 (N=ND+G) 2,14,14 OPLSPA38 14 RETURA OPLSPA38		00 11 I=1+NPTS	OPL SPA23
J=N JPLSPA25 8 IF (J) 10,10,9 GPLSPA26 9 PNX=PN(J)+PNX*X(1) UPLSPA27 J=J=1 GPLSPA28 GD TO 8 GPLSPA32 SUM(1)=SUM(1)+W(I)*X(I)*PNX*PNX GPLSPA32 SUM(2)=SUM(2)+W(I)*PNX*PNX GPLSPA32 SUM(2)=SUM(2)+W(I)*PNX*PNX GPLSPA32 SUM(2)=SUM(2)/SUM(3) GPLSPA33 IF (N) 3,3,12 OPLSPA34 12 D0 I 3 J=1,N 13 G(J)=Q(J)+Q(N+1)*PN(J) GPLSPA33 IF (N=ND+G) 2,14,14 GPLSPA33 14 GPLSPA33		PNX=1.C	CPLSPA24
8 IF (J) 10,10,9 GPLSPA26 9 PNX=PN(J)+PNX*X(1) UPLSPA27 J=J-1 GPLSPA28 GD TO 8 GD TO 8 GD TO 8 GPLSPA28 GPLSPA27 J=J-1 GPLSPA27 GD 01 GD TO SUM(1)=SUM(1)+W(I)=X(I)=PNX*PNX GPLSPA31 SUM(2)=SUM(2)+W(I)=Y(I)=PNX*PNX GPLSPA31 GD GPLSPA31 GPLSPA32 Q(N+1)=SUM(2)/SUM(3) GPLSPA33 IF (N) 3,3,12 GO II GPLSPA34 I2 DO I3 GPLSPA33 I3 G(J)=Q(J)+Q(N+1)=PN(J) GPLSPA35 IF (N) GPLSPA35 IF (N=ND=G) 2,14,14 GPLSPA35 GPLSPA35		J = N	JPL SPA25
9 PNX=PN(J)+PNX*X(1) UPLSP427 J=J-1 UPLSP428 :0 FU B :0 I G	8	IF (J) 10,10,9	GPL SPA26
J=J-1 UPLSPA28 :0 TU 8 (PLSPA29) :0 TU 8 (PLSPA29) :0 TU 8 (PLSPA29) :0 TU 8 (PLSPA29) :0 TU 8 (PLSPA31) :0 TU 8 (PLSPA32) :0 TU 8 (PLSPA32) :0 (N+1)=SUM(2)/SUM(3) (PLSPA33) :1 F (N) 3,3,12 (PLSPA34) :2 OU 13 J=1,N (PLSPA35) :1 G(J)=Q(J)+Q(N+1)*PN(J) (PLSPA36) :1 F (N-ND+G) 2,14,14 (PLSPA37) :1 K (TURA) (PLSPA38)	3	PNX=PN(J)+PNX#X(1)	UPLSP427
-50 T0 B (PL\$PA?+ 15 SUM(1)=SUM(1)+W(1)=X(1)=PNX=PNX OPL\$PA3. SUM(2)=SUM(2)+W(1)=YNX OPL\$PA31 11 SUM(3)=SUM(3)+W(1)=PNX OPL\$PA32 -30 (N+1)=SUM(2)/SUM(3) OPL\$PA32 -30 (N+1)=SUM(2)/SUM(3) OPL\$PA33 IF (N) 3,3,12 OPL\$PA34 12 D0 I3 J=1,N OPL\$PA35 13 G(J)=Q(J)+Q(N+1)=PN(J) OPL\$PA36 14 RETURA OPL\$PA38		1 – L = L	UPLSPA28
10 SUM(1)=SUM(1)+W(1)*X(1)*PNX*PNX OPLSP43L SUM(2)=SUM(2)+W(1)*PNX OPLSP43L 11 SUM(3)=SUM(3)+W(1)*PNX OPLSP43L 12 SUM(2)=SUM(2)/SUM(3) OPLSP43L 14 C(N) 3,3,12 OPLSP43L 13 C(J)=Q(J)+Q(N+1)*PN(J) OPLSP43L 14 RETURA OPLSP43L 14 RETURA OPLSP43L		-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	GPLSPA23
SUM(2)=SUM(2)+W(I)*Y(I)*PNX OPLSPA31 11 SUM(3)=SUM(3)+W(I)*PNX*PNX OPLSPA32 :j(N+1)=SUM(2)/SUM(3) OPLSPA33 IF (N) 3,3,12 :D0 I3 J=1,N :3 G(J)=Q(J)+Q(N+1)*PN(J) OPLSPA36 IF (N-ND+G) 2,14,14 :0 UPLSPA35 OPLSPA36 :1 GULSPA36 OPLSPA37 :1 SUM(2)+Q(N+1)*PN(J) OPLSPA36 :1 SUM(2)+Q(N+1)*PN(J) OPLSPA36	1	SUM(1)=SUM(1)+W(I)=X(I)=PNX=PNX	OPL SP43
11 SUM(3)=SUM(3)+W(1)=PNX=PNX OPLSPA32 U(N+1)=SUM(2)/SUM(3) OPLSPA33 IF (N) 3,3,12 2 DU I 3 J=1,N 13 G(J)=Q(J)+Q(N+1)=PN(J) OPLSPA36 IF (N=ND=G) 2,14,14 0 OPLSPA35 OPLSPA36 14 KETURN OPLSPA36		SUM(2)=SUM(2)+W(I)+Y(I)+PNX	OPLSPA31
U(N+1)=SUM(2)/SUM(3) UPLSPA33 IF (N) 3,3,12 UPLSPA34 12 DD I 3 J=1,N UPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) UPLSPA36 IF (N=ND+G) 2,14,14 UPLSPA36 14 KETURN UPLSPA38	11	SUM(3)=SUM(3)+W(1)=PNX+PNX	OPESPA32
IF (N) 3,3,12 OPLSPA34 12 D0 I 3 J=1,N OPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) OPLSPA36 IF (N=ND+G) 2,14,14 OPLSPA37 14 RETURN OPLSPA38		;;(N+1)=SUM(2)/SUM(3)	UPL SPA33
12 DU I3 J=1,N OPLSPA35 13 G(J)=Q(J)+Q(N+1)*PN(J) OPLSPA36 IF (N-ND+G) 2,14,14 OPLSPA37 14 KETURN OPLSPA38		IF (N) 3,3,12	UPLSPA34
13 G(J)=Q(J)+Q(N+1)*PN(J) UPLSPA36 16 (N-ND+G) 2,14,14 14 RETURN UPLSPA38	12	$O(J I 3 J = 1 \cdot N)$	OPE SPA35
IF (N=ND+G) 2+14+14 OPLSPA37 14 RETURN OPLSPA38	13	G(J) = Q(J) + Q(N+1) * PN(J)	UPL SPA36
14 RETURN (IPUSPA38		IF (N-NDFG) 2,14,14	UPLSPA37
	14	RETURN	UPLSPA33
FND		FND	

Figure 5 (Continued)

```
/ΙΞΔΤΔ
7STOP
//B017GVAL JOP
           DO DSNAME=SYS1.WATBPS,DISP=(CLD,PASS)
EXEC BPS
                 wAOC87,TIME=2,SIZE=128K,CARDS=400@,GORDUN
ZZJOBETB DD
//STEP1
ZASPS.SYSTN DD
                  B
11.16
               ADOB7-GVAL, TIME=1, LINES=60, PAGES=3C
٢.
      PRUGRAM FOR EVALUATING POLYNOMIAL FIT TO ELECTROCAPILLARY DATA
      AT ARBITRARY VOLTAGES, AND PUNCHING CORDS WITH THESE VALUES
c
C.
      INPUT DATA REQUIREDOPULYNUMIAL COEFFICIENTS FOR GAMMA(VCLTS) DATA
C
r
      ALSO ONE MUST GIVE REFERENCE ELECTRODE USED IN VULTAGE
١.
      MEASUREMENTS AND ORGANIC SURFACTANT AND FLECTROLYTE USED
1
      DIMENSION TITLE(18), GAMMA(101), VOLT(101) , A(20)
   30 READ(1,2)VOLTO
    2 FORMAT(F10.0)
      READ(1,3)(A(I),I=1,11)
    3 FORMAT(4F15.8)
      UELIA = 0.025
      U = (VOLT() + 1.300)/DELTA
NPTS = 1 + U
VOLT(1) = VOLTC
      PEAD(1,20)TITLE
   26 FORMAT(18A4)
      WRITE(3,40)TITLE
   40 FURMAT(@10,18A4)
      WRITE(2,2C)TITLE
      WRITE(3,21)
   21 FURMATI///@ 0,0POLARIZATION VOLTAGE0,5X,0INTERFACIAL TEASION )
      10 10 K=1+NPTS
      JAMMA(K) = A(1)
      10 12 1=2+11
      GAMMA(K) = GAMMA(K) + A(I) + VULT(K) + (I-1)
   12 CONTINUE
      WRITE(3,22)VULT(K),GAMMA(K)
   22 FORMAT(F20.7,5X,F20.7)
      WEITE(2,23) VOLT(K), GAMMA(K)
   23 FORMAT(F10.5,20%,F10.5)
   10 VOLT (K+1) = VOLT (K) + DELTA
      FTAD(1,29)NEXT
   29 FORMAT(15)
      HE (NEXT) 31, 31, 35
   31 5109
      I ND
```

```
Figure 6. GVAL listing
```

صل

APPENDIX C Experimental Plots¹ (Figures 7-59)

¹All plots have interfacial polarization as abscissa.

Figure 7. Dependence of reduced damping coefficient $y_2=\alpha/\kappa$ on polarization, system 0.1N aqueous HClO₄ plus octanoic acid at indicated concentration-polarized mercury.

Figure 8. Electrocapillary curve, system 0.1N aqueous HClO₄-polarized mercury comparison of capillary ripple and capillary electrometer results

Figure 11.

Figure 12. Model-generated Θ curves for the system phenol in N/10 HClO₄-mercury

Figure 14. Yl from experiment and model for the pure N/10 HClO₄mercury interface

correction) for the 0.03-M phenol in N/10 HClO4-mercury interface

Figure 20. Yl curves from experiment and model (with and without diffusion correction) for the 0.1-M phenol in N/10 HClO₄-mercury interface

Figure 22. Experimental and model Y2 curves for the 10^{-3} -M phenol in N/10 HClO₄-mercury interface

Figure 31.

Figure 33.

Figure 36. Yl curves from experiment and model for the 10⁻⁶-M NaDS in .05-M Na₂SO₄-mercury interface

Figure 39.

Figure 42. Experimental and model Yl curves for the 5 x 10⁻⁴-M NaDS in .05-M Na₂SO₄-mercury interface

INTERFACIAL POLARIZATION (VOLTS VS. S.C.E.) Figure 46. Y2 curves from model and experiment for the 10⁻⁶-M NaDS in .05-M Na₂SO₄-mercury interface

Figure 48. Y2 curves from model and experiment for the 2.5 x 10^{-5} -M NaDS in .05-M Na₂SO₄-mercury interface

Figure 50. Model and experimental Y2 curves for the 10⁻⁴-M NaDS in .05-M Na₂SO₄-mercury interface

Figure 54. Y2 curves from experiment and model for the 2.5 x 10^{-3} -M NaDS in .05-M Na₂SO₄-mercury interface

Figure 56. Real and imaginary components of the surface elastic modulus (E) from model and experiment for the 2.5 x 10^{-3} -M NaDS in .05-M Na₂SO₄-mercury interface

Figure 57. Current_voltage curves showing O_2 maximum in + to - potential scan for the 10^{-5} -M NaDS in .05-M Na₂SO₄-mercury interface. O_2 maximum effects can be seen in ripple data

Figure 58. Current-voltage curves for the 5 x 10^{-5} -M NaDS in .05-M Na₂SO₄mercury interface. At this NaDS concentration O₂ effects are seen in this plot but not in ripple data

Figure 59. Current-voltage curve for the 5 x 10^{-4} -M NaDS in .05-M Na₂SO₄mercury interface. O₂ maximum has been almost eliminated by surfactant

APPENDIX D

Listings of Data from YCOR for each Concentration of Phenol and NaDS¹. Octanoic Acid Data is given in (24)

Each Figure in this appendix is the output from the data set from one concentration and consists of six pages. Page i contains the fixed input data from experiment and the input for the model. Page ii consists of the experimental data arrays. Page iii consists of the data and output for the amplitude correction. Pages iv-vi consist of calculated values from model and experiment. Figures 60-66 are for the phenol in N/10 $HClO_4$ solutions, while Figures 67-77 are for NaDS in .05-M Na_2SO_4 , the Figures being in order of increasing concentration.

¹Data are given in this appendix for the normal model values mentioned in text, i.e. with the diffusion correction for phenol and with $\beta=1.5$ for NaDS.
Figure 60. YCOR data for pure .1-N HClO₄

SURFACTANT CONCENTRATION= PURE ELECTROCAPILLARY MAXIMUM IS -0.47500 VOLTS VS. S.C.E. FRUMKIN EXPONENT = 1.22000ELECTRICAL DESORPTION EXPONENT = 15.00000MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.00000DIFFUSION TERM= 10000.00SURFACE VISCOSITY OF PURE INTERFACE= 0.000001SURFACTANT SURFACE VISCOSITY= 0.0001001/B0 = FRUMKIN CONCENTRATION CONSTANT= <math>0.005000

INPUT DATA FOR MODELFD BEHAVIOR: MCDIFIED FRUMKIN ISOTHERM

WAVENUMBER = 65.558365 RECIPROCAL CM.

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE D.D089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 27.30000000 MV. INITIAL DAMPING COEFFICIENT 0.51540 1/CM. WAVELENGTH 0.09584 CM. PROBE SEPARATION = 1.15010 CM.

MFASLREMENTS MADE AT WATER PURE C. 10-N HCLO4 / MERCURY

IN TER FACE

THE .IN HOLDA/HG INTERFACE(7-11-67)

ANALYSIS OF INTERFACIAL RIPPLE DATA : DATA OF G.BIERWAGEN MEASURED AT

-04	PUL - VOL TAGE	FA ED VENCY		54 445
	0.35000	402.00000	14. 00000	337.640799
2	3. 300030	ປີບົບບູດ • ຍິງ 4	20, 700300	UULU96*27E
r.	0°275000	111*100001	21• 2r9900	していしゃ。こうざ
4	2.25000	4 1 4* OUUD VU	21° 60000	157 64077
(C) ×	0.225000	416,900000	22. 10000	362. 19030
0 -		000000 [2 7	000003 22	000044.405 010
- 4	0-150000	4.2.4.200000 6.24.200000	10/10/10 - 22 -	000012 375
'n	0-125000	425 50000	25-10000	378-520000
10	0.10000	427.00000	26-10000	342. 160000
11	0.07 5000	4 2 R. 40000	26. 800000	395. 65 0000
12	0.0000	429.60000	27.100000	398.970010
	0.025000	431.00000	27.50000	392.160000
14	0-0	432 SOLON	29-200700	395.210000
15	-0*022000	434 400000	24- 200000	398.120000
		4 3 7 4 0 0 0 0	000006 %2	400-9004004
			26-800000	000000000000000000000000000000000000000
61	- 0-125000	44 C 50000	27. 00000	
20	-0.150000	441-70000	27-40000	410-740000
21	-0.175000	442-80000	27. 90000	4 12 8 7 0 0 0 0
22	-0*200000	444.00000	29. 300000	414.850000
23	-0.225000	445 . 100000	28.60000	416.69000
24	-0.25000	446.200000	24. 500,000	418.360000
25	-0-27 5000	447.20000	27.90000	419.870000
26	-0.30000	448. 100000	28.000 000	421.220000
27	-0-325000	448 700000	24 . 10000	422.3 90000
2R 20	-0*350000	445 400000	28.100000	423.380000
62	-0-315000	4 49. B00000	28.30000	424•190000
2	-0.40000	4 5 0a 2 0 0 0 0 0	2 Te 900000	424 • 81 0000
10	0005740-	450° 700000	27. 500900	425.340000
			27.50000	425 • 4 8 00 0 0
1		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 10000	4/30 54/000
		451 00000	000000 12	4475447UUUU
36	-0-550000	450-60000	27-00000	1000021 - 124
37	-0.575000	450-40000		0000000-969
38	-0-60000	4 50° 400000	26- 60000	000010-124
39	-0.625000	450,00000	26.600000	422 370000
40	- 0.65 000 0	449.60000	26. 300000	421. 340000
41	-0.675000	449.60000	26.100000	420.200000
42	-0*10000	449. 100000	26.800000	4 IA. 9 50000
n 4		448. ID0000	27.80000	417.610000
54		446 400000	28 100000	416.140000
46	-0-00000	445-30000	28, 000000	414607000
47	-0.825000	444 50000	29-00000	411-280000
48	-0.850000	443 . R00000	27. 90000	409.400010
49	-0.875000	443.10000	27. 700900	407.340000
00	000006-0-	442° 400000	27.50000	4 05 • 05 00 01
10	-0,925000	441° 900000	26. 900000	402.440090
26	000046-0-	441 . 500000	26. 600000	3 99. 900010
2 Y		440, 60000	Z 7. 800000	397.500000
55	-1-025000	440* 100000	24- 000000	394 • 900000 302 600000
56	-1-05000	4 18 90000	25-00000	289 - 700000
57	-1.075000	438.30000	24- 800 10	187,000000
58	-1-1 00000	437. BOARCO	23. 70000	36 3. 800000
Figure 60	(Continued)			

176

INPUT DATA

.

INTTIAL FREQUENCY = 433.60000

 PDLYNDWIAL CDEFFICIENTS
 FF AMPLITUDE CORRECTION

 -0.12074007150 04
 FRF0UENCY** 0

 -0.1207407705150 04
 FRF0UENCY** 1

 -0.271273278690 04
 FRF0UENCY** 2

 F1773278690 04
 FRF0UENCY** 4

 -0.2040379750 03
 FRF0UENCY** 4

 -0.1046187170 03
 FRF0UENCY** 4

 C.438696764150 03
 FRF0UENCY** 4

 C.438696745150 03
 FRE0UENCY** 4

 C.438696745150 01
 FRE0UENCY** 4

 C.35860196620-00
 FRE0UENCY** 4

 C.35734233779600-01
 FRE0UENCY** 4

 C.357742096680-00
 FRE0UENCY** 4

 C.357742096680-01
 FRE0UENCY** 4

VOLTAGE

 NU.
 FREQUENCY
 CARRECTED OUTPUT
 VOLTAGE
 NI.
 FREQUENCY
 CARRECTED OUTPUT
 VI.

 1
 4760-0000
 11,477243
 31
 4560-0000
 24,52171
 24,52171

 2
 4760-0000
 19,47724
 31
 4560-0000
 24,502000
 24,60010
 24,60016
 24,60016
 24,60010
 24,60010
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 25,60713
 2

Figure 60 (Continued)

÷

.

		יחור ערב זהי	לע האלנ צעד יור אך ני≡ט. לע האלנ צעד	THET' FROM WINEL	4110×3124012	l lauraland	
		n. 35000		50000000000000000000000000000000000000		70923°C	
		0.34600	2012/2 Stars		1° 16432	1,579979 A 537090	
0.27500 0.10750 0.10770 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.00000 0.17500 174, 5745 0.000000 0.17500 174, 5745 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 174, 5747 0.000000 0.17500 114, 7741 114, 7741 0.17500 114, 7741 114, 7741 0.17500 114, 7741 114, 7741		0.250.00	3 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			3.526014	
6, 7375 7, 75, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1770 7, 77, 2774 7, 700777 7, 1771 7, 77, 2774 7, 700777 7, 1771 7, 77, 7774 7, 700777 7, 1771 7, 77, 7774 7, 700777 7, 1771 7, 7774 7, 7774 7, 1771 7, 7774 7, 7774 7, 1771 7, 7774 7, 7774 7, 1771 7, 7774 7, 7774 7, 1771 7, 7774 7, 7774 7, 1771 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774 7, 7774		0.2250	343, 57505	n_nnnnn	n. Thank 7	7 5 2 4 2 1 4	
0.15000 177, 27, 27, 7 0.160000 0.15000 177, 27, 27, 7 0.160000 0.15000 177, 27, 70, 7 0.160000 0.15000 177, 27, 70, 7 0.160000 0.15000 177, 27, 70, 7 0.160000 0.15000 174, 27017 0.160000 0.15000 174, 27017 0.160000 0.15000 174, 27017 0.1600000 0.15000 174, 7717 0.1600000 0.15000 174, 7717 0.1600000 0.15000 174, 7717 0.16000000 0.1500000 174, 7717 0.16000000 0.15000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 7731 0.16000000 0.150000000 111, 77414 0.16000000 0.16000000 <t< td=""><td></td><td>06 002 0</td><td>358. 19746</td><td>U+ 007007</td><td>7.62]541</td><td>1.522631</td></t<>		06 002 0	358 . 19746	U+ 007007	7.62]541	1.522631	
		0°17500	3 72 02472	0• 000 00	0.6AD791	9.523642	
		00C41°C	376•23793 378 53733	0,000000	F135730	0.519143	
0.07500 9.40, 2774 0.07000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.07500 9.40, 2774 0.000000 0.000000 0.0111000 1411 7712 0.000000 0.011000 0.000000 0.000000 0.000000 0.011000 0.000000 0.000000 0.000000 0.025000 0.000000 0.000000 0.000000 0.025000 0.000000 0.000000 0.000000 0.025000 0.000000 0.000000 0.000000 0.025000 0.000000 0.000000 0.000000 0.025000 0.020000 0.000000 0.000000 0.025000 0.020000 0.000000 0.000000 0.025000 0.0200000 0.0		0010000				1/4414 °C	
0.05(70) 915, 71966 0.07000 0.075500 916, 7783 0.000000 0.075500 916, 7783 0.000000 0.075500 916, 7783 0.000000 0.075500 916, 7783 0.000000 0.075500 916, 7783 0.000000 0.075500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.017500 916, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.000000 0.027500 914, 7783 0.0000000<		0.07500	3 2 2 6 7 9 5 9	0-000000	0.52861.7	0.512553	
0.0 0.0 <td></td> <td>C. 05 C10</td> <td>3 P5. 79966</td> <td>0.00000</td> <td>01010</td> <td>7-510676</td>		C. 05 C10	3 P5. 79966	0.00000	01010	7-510676	
-0.4750 -0.47500 -0.47700 -0.475000 -0.475000 -0.475000 -0.475000 -0.475000 -0.475000000 -0.4750000000 -0.4750000000 -0.47500000000 -0.47500000000 -0.47500000000000000000000000000000000000		0°07500	2 4 9 a 2 4 1 2 a	0° 00000	0.50694 2	9.509059	
-6.07500 -6.07500 -1.1750 -0.17500 -1.1750 -0.175000 -0.175000 -0.17500 -0.17500 -0.175000 -0.175000 -0.175000 -0.175000 -0.175000 -0.175000 -0.175000 -0.175000 -0.175000 -0.1750000 -0.1750000 -0.17500000 -0.175000000 -0.17500000000000000000000000000000000000		c • c	3 90° 97967	0.00000	9 • 4 5 5 A 3	7. 507771	
$ \begin{array}{c} -6.07900 \\ -6.07900 \\ -6.117, -6.1790 \\ -6.10000 \\ -6.117, -6.1790 \\ -6.10000 \\ -6.117, -6.1790 \\ -6.117, -6.1790 \\ -6.10000 \\ -6.117, -6.1790 \\ -6.10000 \\ -6.117, -6.1790 \\ -6.10000 \\ -6.117, -6.1790 \\ -6.117, -6.17900 \\ -6.117, -6.1790 \\ -6.117, -6.170 \\ -6.117, -6.1790 \\ -6.117, -6.170 \\ -6.1$		-0°05200	394 a 37247	000000	0.4PR123	0.506899	
-0.10000 -0.10000 -0.10000 -0.10000 -0.100000 -0.100000 -0.100000 -0.27590 -0.200000 -0.27590 -0.27590 -0.200000 -0.27590 -0.27590 -0.200000 -0.27590 -0.27590 -0.200000 -0.27590 -0.27590 -0.200000 -0.27590 -0.200000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.20000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.27590 -0.2000000 -0.2000000 -0.27590 -0.2000000 -0.27590000 -0.27590 -0.2000000 -0.2759000 -0.20000000 -0.27590000 -0.27590000 -0.27590000 -0.275900000 -0.27590000 -0.27590000 -0.2759000000000000000000000000000000000000		-0*02000	3 96. 15127	60,000 0	0.54352	J. 505327	
-5.12500 -6.17500 -6.17500 -6.17500 -6.27500 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.000000 -6.00000000 -6.00000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.0000000 -6.00000000 -6.0000000 -6.00000000 -6.00000000 -6.00000000 -6.0000000 -6.00000000 -6.00000000 -6.00000000 -6.00000000 -6.00000000 -6.00000000 -6.00000000 -6.000000000000 -6.00000000 -6.00000000 -6.000000000000000000000000000000000000		-0-07500	72825°666	0* 000 404	0-537103	0°504084	
-0.17500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.127500 -0.1000700 -0.127500 -0.127500 -0.127500 -0.1200700 -0.12			2291142900 2291253000	0,000/00	0,540623	0.504378	
-0.17500 -0.255000 -0.2000000 -0.2000000 -0.2000000 -0.2000000 -0.2000000 -0.2000000 -0.2000000 -0.00000000		- Cal 67 UC	4(1)9 11000 4 07 54540		. 0 J / 6 . • 6	0.503694	
-0.27500 -0.27500 -0.2775000 -0.2775000 -0.2775000 -0.2775000 -0.2775000 -0.2775000 -0.2775000000 -0.2750000 -0.27500000 -0.275000000 -0.275000000 -0.275000000 -0.27500000000000000000000000000000000000			07063 007		0, t/7, 0	1 4020200	
-0.27500 -0.25900 -0.25900 -0.25900 -0.25900 -0.25900 -0.25900 -0.25900 -0.25900 -0.450000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.45000 -0.47500 -0.477000 -0.477000 -0.477000 -0.477000 -0.477000 -0.477000000 -0.477000000 -0.4770000000000000000000000000000000000			10 1- 77821		0. 50 50 50 50 50 50 50 50 50 50 50 50 50	0,5017200	
-0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.255000 -224.55900 -20000000 -224.55900 -224.55900 -224.55900 -224.55900 -224.55900 -224.55900 -224.55900 -224.559000 -224.55900 -224.559000 -224.559000 -224.559000 -224.559000000 -224.55900000000 -224.55900000000000000000000000000000000000		-0-22500	413, 70017		0 50003 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
-0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.27500 -0.250000 -0.250000 -0.2500000 -0.25500 -0.2500000 -0.25500 -0.2500000 -0.2500000 -0.2500000 -0.2500000 -0.25000000 -0.25000000 -0.25000000 -0.25000000 -0.25000000 -0.25000000 -0.250000000 -0.25000000 -0.250000000 -0.250000000 -0.25000000000 -0.250000000		-0.25000	415-82109	000000	0.506980	0.500307	
$ \begin{array}{c} -0.35000 \\ -0.35000 \\ -0.35000 \\ -0.47500 \\ -0.400000 \\ -0.400000 \\ -0.400000 \\ -0.400000 \\ -0.4750 \\ -0.400000 \\ -0.400000 \\ -0.4750 \\ -0.400000 \\ -0.400000 \\ -0.4750 \\ -0.4750 \\ -0.47500 \\ -0.4000 \\ -0.4000 \\ -0.4750 \\ -0.4$		-0°27500	417.65810	0•00000	0.529011	0- 4999 59	
-0. 37500 -0. 37500 -224. 472351 0. 000000 0. 423. 472351 0. 000000 0. 423. 4723 - 4723 - 4723 - 4723 - 4724 - 472		- 0°3 0000	419 . 32144	00+000 °0	0.529214	0.499656	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0°32500	420.43251	000 000 000	0 • 528ja5	0.499222	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0"35000	421.72933	00 0000	0.531125	7.499041	
		-0.37500	6723672	0• 000 000	0. 526552	0.498729	
-0.45000 -0.450000 -0.555000 -0.555000 -0.5550000 -0.5550000 -0.5550000 -0.555000 -0.575000 -0.575000 -0.575000 -0.555000 -0.575000 -0.575000 -0.575000 -0.575000 -0.555000 -0.555000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.575000 -0.5750000 -0.5750000000000000000000000000000000000			101010454	0° 000000	7.540546 0.555157	0.498580	
-0.45700 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.55000 -0.500000 -2.5,055100 -0.500000 -2.5,55651 -0.500000 -2.5,5570000 -2.5,5570000000 -2.5,557000000000 -2.5,5570000000000000000000 -2.5,5570000000000000000000000000000000000		-0-45000	214519424		001 Crt.01 20 2222 - 0	0- 400773	
-0.50000 25.0004 25.0004 0.00000 0.00000 0.000000000000000		-0°47500	424-97740	000000	0.563173	0-498817	
C-625500 424,6909 0,00000 0,00000 C-0.55000 423,9477 0,00000 0,00000 C-0.55000 423,96477 0,00000 0,00000 C-0.55000 423,96477 0,00000 0,00000 C-0.55000 423,96477 0,00000 0,00000 C-0.55000 423,9647 0,00000 0,00000 C-0.55000 475,00 472,000 0,00000 C-0.57000 472,000 472,000 0,00000 C-0.57000 475,00 472,000 0,00000 C-0.70000 475,00 472,000 0,000000 C-0.77500 417,100 0,000000 0,000000 C-0.77500 414,1570 0,000000 0,000000 C-0.77500 414,1607 0,000000 0,000000 C-0.77500 414,1607 0,0000000 0,000000 C-0.77500 414,1750 0,0000000 0,0000000 C-0.77500 414,40750 0,00000000 0,0000000 C-0.77500 414,40750 0,00000000000000000000000000000000000		-0" 5000	425.06094	0. 00000	0.559987	0.499015	
-0.555000 423, 94376 9, 0, 00000 9, 0, 00000 9, 0, 0, 00000 9, 0, 0, 00000 9, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 00000 9, 0, 0, 0, 0, 00000 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		- C. 52500	424° 49004	0•00000	D. 565944	1.99041	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0° 250 00	423 。 94376	0• 000000	0.570697	600670	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0" 275 00	423 . 56951	0* 00000	0.576339	1. 499434	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+0,e600 00	423 56683	000000	0°542625	0.500098	
0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.07000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000		-0.62500	472 . 82401	0,00000	0.591223	0.530491	
- 0. 70000 - 0. 70000 - 0. 77000 - 0. 77000 - 0. 77000 - 0. 77000 - 0. 700000 - 0. 7000000 - 0. 7000000 - 0. 7000000 - 0. 7000000 - 0. 7000000 - 0. 700000 - 0. 7000000 - 0. 700000 - 0. 7000000 - 0. 70000000 - 0. 70000000 - 0. 70000000 - 0. 70000000 - 0. 70000000000000000000000000000000000		-0.575.00	4720U1183	0 000000	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	666005°0	
$ \begin{array}{c} - 0 & 7500 \\ - 0 & 77590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 67590 \\ - 1 & 7550 \\ - 1 & 7550$		-0.70000	2011152		1105000	266166 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0°72500	419-31924		0.525447	0. 507808	
-0.07590 415.6397 0.000000 0.000000 0.000000 0.0000000 0.000000		-0° 75000	417-10696	0.00000	0.571724	0.502901	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0°11590	415.63297	0,00000	0.518º76	0.503475	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		00006-0-	414.15063	0•00000	9.51 9235	0.504143	
-0.47500 411.40745 0.000000 0.000000 0.000000 0.0000000 0.000000		-0.82500	4 12 69 99	0.000 000	0.516752	0.504916	
- 0.97590 4.14,124.75 0.000.07 0.0000.07 0.000.07 0.000.07 0.000.07 0.000.07 0.000.07 0.000.07 0.000.0		0005800-	411.40785	0°00000	n_51 7695	1°50505	
-0.97500 473,474,40 0,000,000 0,000,000 -0.97500 473,470 473,470 0,000,000 -0.97500 473,475 0,000,000 0,000,000 -1.075500 473,475 0,000,000 0,000,000 -1.075500 473,475 0,000,000 0,000,000 -1.075500 473,455 0,000,000 0,000,000 -1.07500 473,455 0,000,000 0,000,000 -1.07500 473,456 0,000,000 0,000,000 -1.075500 473,456 0,000,000 0,000,000		0000000	4 10° 1 24 74	0.000 000	0.521864	1°501034	
		-0.97500	404 H4360	0,00000	0.576174	1.508500 515255	
-0.47590 495,56674 495,56674 0.600000 0.1 -0.47590 495,56674 0.600000 0.0 -1.4000 00 402,45745 0.600000 0.0 -1.402590 402,45745 0.600000 0.0 -1.402590 402,45745 0.600000 0.0 -1.402590 402,45745 0.600000 0.0			00101 LV7				
.0 .0 <th .0<<="" td=""><td></td><td>-0.975.90</td><td>405-54674</td><td></td><td>0 - 61 2023</td><td>046714.0</td></th>	<td></td> <td>-0.975.90</td> <td>405-54674</td> <td></td> <td>0 - 61 2023</td> <td>046714.0</td>		-0.975.90	405-54674		0 - 61 2023	046714.0
-1.02590 403,34735 0,000000 0,000000 0,000000 0,000000 0,000000		- 1-000 10	404 64067		0-536303		
-1.05000 402,44773 0.099990 0. -1.07590 401,35875 0.0099999 0.		-1-02500	403 34735		0.567420	207213-0	
-1.07590 401, 35876 0, 0, 000000 0,		-1.0000	40 5° 44 7 7 2	0. 00000	0 6004 J +	0.517521	
		-1°01200	4 N 1 8 3 5 8 7 4	0° 000 JUJ	0.606174	7.521559	
-1a10000 400443767 04,000000 0,		-1 °1 000	400°43767	COC000 °J	1.44442	1.524227	
	,						

Figure 60 (Continued)

				1	1
e0v000*0-	6.7149AD	600000.01	1 1 • d00443	- 1, 10200	Ê
-0-00015	5. 944631	-0+000014	110 313037	-1-07500	57
-0-000033 -0-000033	4°446571 5,210130	-0.00034	10-935694	-1-05000	2.0
-0-000052	3.991787	-0*00050	9*183667	-1,00000	5 U 1
-0-00017	3. 20 52 90	-0+000012	7.817916	-0.97500	5
	1.996085		7-739506	- 0,95000	22
-0°00215 -0.000155	-9.319352 0.530067	-0° 000140 -0° 000140	Z. 3%1410 5. 538703	-0.97500-	ñ 5
-0° 000293	-0-751385	-0.000240	-0-04451	-0.87500	4
-0.000 38 7	-0.727112	-0.00300	-2.416916	-0.45000	4B
-0*000040-	-0-562050	298 000 -0-	E862575 7-	-0.82500	14
-9-000771	-0.512611	-0-000476	- 6 ₄ C99626 - 6 407700	-0.17.00	4 4 7 7
-0-000414	-0.719614	-0.000520	-6-375496	-0, 75000	4
-0-001049	-2 • 097092	-0.000552	- 3. 422 871	-0.72500	43
-0-012100-0-	- 44 354167	-0-000572	-1.178340	-0.70000	÷5
-0-001462	-7.319203	-0.000582	- 1.4 166695 - 1.4 280.84	-0.67500 -0.67500	0 4 4
-0.001564	- 5. 407929	-0.000577	-9.539407	-0.62500	66
	-5-592606	-0-000569	-10.570624	-0.60000	38
-0*001769	-2,848635	-0.000552	-15-300172	-0.57500	9 F F
-0-001807	-3.226087	-0.000545	-14.991804	-0.52500	35
-0,001 836 -0,001 82 9	-2.5 14839 -3. 982712	046000-0-	-126760	- 0* 50000	
-2.001828	-0-771944	-0- 000541	-16. 687670	- 0.45000	20
	1.430691		-19-125626	-0.42500	31
-0-01 71 4	7.135231 5 310 865	-0.000560	-18,145179 -19:441900	-0-37500	5,2
-0-001645	6.466578	-0-000568	-18.461138	-0*35000	28
-0°01456 -0.001456	4.688303 9.688303	-0.000576	-19-754-01 -19-082149	-0.32500	5,5
-0.001337	10.588456	-0-00578	-19.635901	-0.27500	53
-0-001203	13.442418	-0.000568	-17-170610	-0.25000	56
-0-000041	16 . 941793	-0.000515	-16.751 R34 -14.241406	-0.20200	22
-0.000763	19.548613	-0.000472	-17.363015	-0.17500	21
-0*000494	19.071366 19.207183	4 C C D D C C C C C C C C C C C C C C C	767 GGT *0 Z-	-0-15000	5 02
-0.000382	17.92844	-0- 000246	-20. 453934	- 0-10000	19
-0° 000287	22.004903	-0.000236	-18.334444	-0.07500	17
-0-000152	20.406977 28.596736	-0.000136	-12-531623	-0,02500	15
-0.000107	20.098715	-0• CC0044	+6+000 + d -	0.0	14
150000-0-	21.859358	010000	-13-24361	0* 02 5 00	1
-0 •00033	10.941972	-0-00003	-17.006099 -15 945079	0.07500	::
- 0. 00002 2	3. 647891	-9 - 9 00 0 2 1	-1 6 • 1 BZ 064	00 102 00	51
-0-00014	- 3. 5434.97	-0.00014	-12.669284	0.12500	c
-0-000005	-11.0035 -8-247150		- 3 - 1 - 5 - 75 9	0.15000	~ 6
-0-04000	-17.335432	-0-00015 -	0°52778	0.20000	۰ e
	-14°84459	- 0• 0000 -	-0° 558 220	UUSZZUU	ŝ
100000-0-	-134843474		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C*25000	t n
-0-00000	-37.144179	100000 C	5.04A723	0.30010	~ ~
ບບບບບບີບີ້	230 531 242	-1. Γζημη	23. 14512	ULCSE *Ú	-
l w (E) - wuwif	14(F)-FXPT	7300.∞−(3)38	35151-FXPT.	ያኑ 11ግቢ ነር የ	• •

Figure 60 (Continued)

0. 977(0) 0. 977(0) 0. 977(0) 0. 275000 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 977(0) 0. 17500 0. 977(0) 0. 971(0) 0. 17500 0. 977(0) 0. 971(0) 0. 17500 0. 971(0) 0. 971(0) 0. 17500 0. 966014 0. 981(0) 0. 17500 0. 966014 0. 961(0) 0. 17500 0. 966014 0. 961(0) 0. 17500 0. 966018 0. 961(0) 0. 17500 0. 961(146 0. 961(147 0. 17500 0. 961(146 0. 961(147 0. 17500 0. 961(146 0. 961(147 0. 17500 0. 961(186 0. 961(176 0. 17500 0. 961(186 0. 961(176 0. 17500 0. 961(176 0. 961(176 0. 17500 0.	7-013480	1-008155
275000 0.977795 0.9971795 125000 0.9777125 0.98117 125000 0.9777125 0.98117 125000 0.977775 0.977775 125000 0.977775 0.977775 125000 0.977775 0.98117 125000 0.977775 0.981736 125000 0.977775 0.981736 125000 0.977775 0.981736 0.99147 0.99147 0.99147 0.99147 0.99147 0.99147 0.99147 0.99147 0.99147 0.99147 0.991712 0.99147 0.991712 0.99147 0.991712 0.99147 0.991712 0.991767 0.991712 0.991767 0.991712 0.991767 0.991772 0.991777 0.991772 0.99177 0.991772 0.99177 0.991772 0.99177 0.991772 0.99177 0.991772 0.99177 0.991772 0.991777 0.991777 0.	0,012,004	C 18000-0
7.75700 0.977701 0.971705 1.75000 0.977705 0.971765 1.75000 0.977705 0.971712 1.75000 0.977705 0.971712 1.75000 0.977705 0.971745 1.75000 0.977775 0.94174 1.75000 0.964014 0.91146 1.75000 0.964014 0.91146 1.75000 0.964014 0.91146 1.75000 0.964012 0.91146 1.75000 0.964012 0.91146 1.75000 0.964012 0.91146 1.75000 0.964012 0.91167 1.75000 0.964012 0.91167 1.75000 0.964012 0.91167 1.75000 0.964012 0.91167 1.75000 0.964012 0.91173 1.25000 0.964012 0.91173 1.25000 0.964012 0.91173 1.25000 0.964012 0.91173 1.25000 0.964012 0.91173 1.25000 0.964013 0.91173 1.25000 0.964013 0.911	0.011557	n.00804 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0°1110°C	0 CANC 0
	0-010801	0.007983
1125000 0.977725 0.91136 1125000 0.977725 0.98147 107500 0.977725 0.98147 107500 0.977725 0.98147 107500 0.965020 0.98147 107500 0.965020 0.98147 107500 0.965020 0.98147 107500 0.965020 0.98147 107500 0.965020 0.98174 107500 0.965020 0.98174 107500 0.965048 0.99167 107500 0.965648 0.99167 107510 0.965648 0.99167 107500 0.965648 0.99167 107500 0.965648 0.99167 107500 0.967728 0.99176 107000 0.961735 0.99176 107000 0.971442 0.99177 107000 0.9711196 0.99177 107000 0.9711196 0.99177 107000 0.9711196 0.99177 107000 0.9711196 0.99177 107000 0.977445 0.991767	9 4 5 C 1 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	196/00100
1,12500 $0,97137,56$ $0,97137,56$ $0,97137,56$ $1,07500$ $0,966014$ $0,96144$ $0,91146$ $0,07500$ $0,966024$ $0,91146$ $0,91146$ $0,07500$ $0,96502446$ $0,91146$ $0,91167$ $0,07500$ $0,965048$ $0,91167$ $0,91167$ $0,07500$ $0,965048$ $0,91167$ $0,91167$ $0,07500$ $0,965048$ $0,91167$ $0,91167$ $0,07500$ $0,965048$ $0,91167$ $0,91167$ $0,07500$ $0,967028$ $0,91167$ $0,91167$ $0,07000$ $0,967028$ $0,917291$ $0,91767$ $0,07000$ $0,967028$ $0,917796$ $0,917796$ $0,07000$ $0,971196$ $0,917796$ $0,917796$ $0,07000$ $0,971137$ $0,917796$ $0,917796$ $0,07000$ $0,971137$ $0,917796$ $0,917796$ $0,07000$ $0,9711376$ $0,917796$ $0,91776$ $0,07000$ $0,9711376$ $0,9177676$ $0,9177676$ $0,07000$ $0,977676$ $0,971676$	0.00965Z	0.007909
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 •008944	9.0078R 2
0.95000 0.956461 0.96441 0.97500 0.9656461 0.96144 0.97500 0.9657128 0.96145 0.97500 0.9657128 0.96145 0.97500 0.9657128 0.961672 0.97500 0.9657128 0.97167 0.97500 0.9657128 0.97167 0.97500 0.9657128 0.97167 0.971720 0.97167 0.97167 0.971720 0.97167 0.98176 0.971446 0.981767 0.981767 0.971472 0.981767 0.981767 0.971472 0.97167 0.981767 0.971475 0.971476 0.981767 0.971475 0.971476 0.98177 0.971475 0.971475 0.98177 0.971475 0.971475 0.98177 0.971475 0.971475 0.98177 0.971475 0.971475 0.99177 0.971475 0.971475 0.99177 0.971475 0.971475 0.99177 0.971475 0.971475 0.99177 0.971475 0.97177 <td>0.008417</td> <td>0.007859</td>	0.008417	0.007859
0.5 0	0.007010	2 182 00 °C
0.965641 0.961541 0.94151 0.97500 0.965644 0.94151 0.97500 0.965644 0.94151 12500 0.965644 0.94150 12500 0.965644 0.94150 12500 0.965648 0.94161 12500 0.965648 0.94164 0.96172 0.96172 0.94161 12500 0.96172 0.96167 0.96172 0.961736 0.94173 12500 0.961736 0.94173 12500 0.961736 0.94173 12500 0.961736 0.94173 12500 0.961736 0.94173 12500 0.9711375 0.94173 12700 0.9711375 0.94173 12700 0.971137 0.94173 127500 0.971231 0.94173 127500 0.971137 0.94173 127500 0.971137 0.94173 127500 0.971137 0.94173 127500 0.971733 0.94173 127500 0.971733 0.97173 <	0° 007733	10101-0
0.2500 0.965020 0.965020 0.5000 0.965024 0.961512 0.5000 0.967128 0.96164 0.15000 0.967128 0.9151 1.15000 0.967128 0.91161 0.50128 0.967128 0.91161 1.15000 0.96702 0.96168 0.91161 0.511500 0.966902 0.961018 0.91161 0.511500 0.961018 0.91161 0.91172 0.511000 0.961018 0.91172 0.91172 0.511010 0.961018 0.91172 0.91172 0.52100 0.961018 0.91172 0.91172 0.51101 0.97326 0.91173 0.91173 0.51101 0.971044 0.91173 0.91173 0.51000 0.974297 0.91179 0.91173 0.51000 0.974297 0.91179 0.91179 0.51000 0.974297 0.91179 0.91179 0.51000 0.974297 0.91179 0.91179 0.51000 0.974297 0.91179 0.91179 0.51000 0	0.006953	0-007774
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.007446	0.007759
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.008291	0.007740
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.008194	0.007728
 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2510 2.2510 2.2510 2.25117 2.2	0-008247	0.007715
 117000 125000 251000 251000 25100 2511145 25100 2511145 <li< td=""><td>0.008194</td><td>0*007701</td></li<>	0.008194	0*007701
1.17500 0.964880 0.94188 1.25000 0.964902 0.964902 1.259000 0.964902 0.964902 1.259000 0.964902 0.964915 1.259000 0.964915 0.964917 1.259000 0.964915 0.964917 1.259000 0.971195 0.9817 1.259000 0.971315 0.9817 1.29000 0.971315 0.9817 1.29000 0.971315 0.98179 1.29000 0.971315 0.98179 1.29000 0.971315 0.98179 1.25000 0.9712321 0.98179 1.25000 0.974297 0.98179 1.25000 0.974297 0.98179 1.25000 0.974297 0.98179 1.25000 0.974297 0.98179 1.25000 0.974297 0.99176 1.25000 0.974297 0.99176 1.25000 0.974297 0.99176 1.25000 0.974297 0.99176 1.275000 0.977485 0.99176 1.75000 0.977487	0.008045	0.0076A9
2225000 0.964902 0.964902 0.98175 2225000 0.971647 0.98176 222500 0.971647 0.98176 232500 0.971647 0.98179 242500 0.9711667 0.98179 242500 0.971296 0.98179 242500 0.971296 0.98179 242500 0.977296 0.98179 242500 0.977296 0.98179 242500 0.977296 0.98179 242500 0.977296 0.98179 242500 0.977296 0.98179 242500 0.977296 0.98179 242500 0.9774767 0.98179 2477500 0.9774767 0.98179 2477500 0.9774767 0.98187 2477500 0.9774767 0.991857 2477500 0.9774767 0.991857 247550 0.991857 247550 0.991857 247500 0.9774767 0.991857 247500 0.9774767 247500 0.977477 247500 0.9774767 247500 0.9774767 247500 0.9774767 247500 0.9774767 247500 0.9774767 247500 0.9774767 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 247500 0.977477 24	25H/00°C	119100 0
2.275000 0.96770 0.9817 2.275000 0.967790 0.9817 2.35000 0.970442 0.9817 2.35000 0.970442 0.9817 2.35000 0.971467 0.9817 2.35000 0.971467 0.9817 2.35000 0.971475 0.9817 2.45000 0.971375 0.9817 2.45000 0.9773591 0.98179 2.45000 0.9773591 0.98179 2.45000 0.977450 0.98179 2.45000 0.977450 0.98179 2.45000 0.977450 0.98179 2.45000 0.974460 0.98179 2.45000 0.974417 0.98179 2.55000 0.974419 0.98179 2.55000 0.97113 0.98179 2.55000 0.97113 0.98179 2.55000 0.97133 0.98179 2.55000 0.97133 0.98179 2.55000 0.97133 0.98175 2.55000 0.97133 0.99165 2.55000 0.97133 0.99165	111/00°0	0.007657
327500 0.971196 0.98175 327500 0.971196 0.98175 327500 0.971196 0.98176 327500 0.971195 0.98179 327500 0.971195 0.98179 327500 0.971195 0.98179 327500 0.971275 0.98179 327500 0.971275 0.98179 327500 0.972221 0.98179 327500 0.975295 0.98179 327500 0.975295 0.98179 327500 0.97546 0.98179 325500 0.97526 0.98179 325500 0.975413 0.98179 325500 0.976155 0.98179 325500 0.977413 0.98171 325500 0.977413 0.981617 325500 0.977413 0.99167 325500 0.977413 0.99167 325500 0.977413 0.99167 325500 0.977413 0.99167 325500 0.977413 0.99167 325500 0.977413 0.99167		0.44700-0
335000 0.971 067 0.981 79 335000 0.971 195 0.981 79 335000 0.971 195 0.981 79 335000 0.971 195 0.981 79 345000 0.971 195 0.981 79 345000 0.971 195 0.981 79 345000 0.971 195 0.981 79 345000 0.971 275 0.981 79 345000 0.974 297 0.981 79 345000 0.974 297 0.981 79 355000 0.974 297 0.981 79 355000 0.974 297 0.981 79 355000 0.974 297 0.981 79 355000 0.974 297 0.981 79 355000 0.974 297 0.981 79 355000 0.977 195 0.981 79 355000 0.977 195 0.981 79 355000 0.977 95 0.991 79 355000 0.977 95 0.991 87 355000 0.977 95 0.991 87 355000 0.977 86 0.991 87 355000 0.977 86 0.991 87 355000 0.977 86	690800°0	0-007641
•37500 0.970442 0.91142 •37500 0.971367 0.98179 •37500 0.971359 0.98179 •40000 0.971359 0.98179 •40000 0.971359 0.98179 •40000 0.971359 0.98179 •40000 0.973595 0.98179 •45000 0.973595 0.98179 •45000 0.974229 0.98179 •45000 0.974229 0.98171 •45000 0.974279 0.98171 •45000 0.975776 0.98171 •55000 0.975716 0.98171 •55000 0.975716 0.98171 •55000 0.97776 0.98176 •55000 0.977036 0.971736 •55000 0.977036 0.99163 •75000 0.977036 0.99163 •75000 0.977036 0.99163 •75000 0.977036 0.99163 •75000 0.977036 0.99163 •75000 0.977036 0.99163 •75000 0.977036 0.99163	0-008072	0-007635
0.971196 0.98179 0.971375 0.98179 0.971375 0.98179 0.971375 0.98179 0.971375 0.98179 0.971375 0.98179 0.971295 0.98179 0.971295 0.98179 0.971797 0.98179 0.971797 0.98179 0.972975 0.98179 0.977295 0.977476 0.977276 0.98179 0.977776 0.98179 0.977476 0.98179 0.977476 0.98179 0.977476 0.98179 0.77000 0.974417 0.77000 0.974176 0.77000 0.974176 0.77000 0.977476 0.77000 0.977476 0.77000 0.977476 0.77000 0.971676 0.77766 0.99165 0.77676 0.991675 0.77676 0.991675 0.77676 0.991676 0.77676 0.991676	0.008060	0.007628
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.008102	0.007624
••••••••••••••••••••••••••••••••••••	0. 008032	0-007619
45000 0.971296 0.98179 45000 0.971296 0.98179 55900 0.97120 0.98179 55900 0.974297 0.98179 55900 0.975716 0.98179 55900 0.975716 0.98171 55900 0.975716 0.98171 55900 0.975716 0.98171 55900 0.975716 0.98171 55900 0.975716 0.98171 55900 0.977941 0.98171 55900 0.977046 0.98171 55900 0.977036 0.98173 577000 0.977036 0.99163 577000 0.977036 0.99163 57500 0.977036 0.99163 57500 0.977036 0.99163 57500 0.977036 0.99163 582500 0.977036 0.99163 582500 0.977036 0.99163 875900 0.977036 0.99163 875900 0.977036 0.99163 875900 0.977036 0.99163 875900 </td <td>0.008245</td> <td>0.007616</td>	0.008245	0.007616
• • • • • • • • • • • • • • • • • • •	0010000	419100°0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-008590	0-007614
 \$5500 \$74,420 \$7700 \$7700 \$7700 \$7700 \$7700 \$7700 \$7710 \$7700 \$77119 \$7700 \$77119 \$7700 \$77119 \$7700 \$77119 \$7700 \$77119 \$7700 \$7700 \$7710 \$7700 \$7710 \$7710 \$7710 \$7710 \$7710 \$77113 \$7710 \$77133 \$77500 \$77133 \$77500 \$77133 \$77500 \$77133 \$77500 \$77000 \$77133 \$77500 \$77133 \$77500 \$77133 \$77500 \$77036 \$77133 \$77133 \$77500 \$77133 \$77500 \$77133 \$78167 \$98167 \$98167	0.008594	0.007615
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.008633	9.007617
• • • • • • • • • • • • • • • • • • •	501800 0.	0.007619
• • • • • • • • • • • • • • • • • • •	161800*0	0.007622
	0.008891	0 00 762 9
• 57000 0.979417 0.9117 • 70000 0.979417 0.98175 • 77000 0.971925 0.98175 • 77500 0.977935 0.98167 • 77500 0.977474 0.98167 • 77500 0.977474 0.98167 • 77500 0.977474 0.98167 • 77500 0.977035 0.98167 • 77000 0.977035 0.99163 • 77100 0.977474 0.99163 • 77100 0.977474 0.99163 • 82590 0.977487 0.99163 • 82590 0.981335 0.99163 • 82590 0.981764 0.99163 • 97500 0.981764 0.99163 • 97500 0.99183 0.99185 • 97500 0.99788 0.99185 • 97500 0.99788 0.99185 • 97500 0.99788 0.99185 • 97500 1.001755 0.99187 • 97500 1.001655 9.98135 • 97500 1.001655 9.98135	0°00 8860 0-000003	0°00'635 0-007630
• 70000 0.990155 0.99145 • 75000 0.977895 0.99170 • 75000 0.977895 0.99170 • 75000 0.977895 0.99167 • 75000 0.977435 0.99167 • 82500 0.977485 0.99167 • 82500 0.977485 0.99167 • 82500 0.977485 0.99159 • 82500 0.977485 0.99159 • 82500 0.977485 0.99159 • 82500 0.977485 0.99159 • 82500 0.977485 0.99159 • 90000 0.977485 0.99159 • 91500 0.977485 0.99159 • 91000 0.98138 0.99159 • 91000 0.99183 0.99159 • 91000 0.99183 0.99183 • 91000 0.99183 0.99183 • 91000 0.99183 0.99183 • 91000 0.99183 0.99183 • 91000 0.99183 0.99183 • 91000 0.99183 <td></td> <td>744700-0</td>		744700-0
-77500 0.978926 0.98170 -77000 0.977036 0.98161 -77500 0.977036 0.98161 -87500 0.977036 0.98161 -87500 0.977036 0.98161 -87500 0.977036 0.98161 -87500 0.977474 0.98161 -87500 0.977036 0.98161 -87500 0.981335 0.98161 -87500 0.981345 0.98161 -87500 0.981345 0.98163 -87500 0.981345 0.98163 -87500 0.981345 0.98163 -87500 0.991346 0.98163 -87500 0.994367 0.98163 -87500 0.994367 0.98163 -87500 1.0010555 0.98134 -87500 1.0010556 0.98136 -87500 1.0010556 0.98136 -97500 1.0010556 0.98136 -97500 1.0010558 0.98136 -97500 1.0010558 0.98136 -97500 1.0010558 0.98136 -97500 1.0010558 0.98136 -97500 1.0010558 0.98136 -97500 1.0010558 0.98136	0.078712	0-007654
-75000 0.977036 0.981.67 -777500 0.977474 0.981.67 -778500 0.977474 0.981.67 -82500 0.977476 0.981.63 -85000 0.981.335 0.981.63 -87500 0.981.335 0.981.63 -981.	0.008167	0.007660
- 771370 0.977133 0.99167 - 82590 0.977474 0.99165 - 82590 0.977474 0.99165 - 82590 0.977465 0.99165 - 981769 0.981369 - 981769 - 981769 - 98769 0.981369 - 98186 - 98186 - 98187 - 98187 - 98189 - 98187 - 98189 - 98187 - 98186 - 9	0.007958	0.007667
40000 0.977474 0.97163 832700 0.9776085 0.971647 832000 0.9776485 0.971618 832000 0.9774685 0.98153 832000 0.977467 0.98153 832000 0.977467 0.98153 832000 0.977467 0.98153 872000 0.987313 0.98153 900000 0.987313 0.98153 975000 0.987312 0.98154 000000 0.99456 0.981412 000000 0.994588 0.99156 000000 1.001755 0.98134 000000 1.0016755 0.98134 0075000 1.001655 0.96134	0°007915	0.007675
	0.001922	0.007684
• \$7790 0.98135 0.98150 • \$90000 0.981769 0.98156 • \$90000 0.981769 0.98156 • \$95000 0.981313 0.98156 • \$95000 0.981313 0.98156 • \$95000 0.987187 0.98156 • \$95000 0.993187 0.98156 • \$97500 0.994388 0.98146 • \$97500 0.994388 0.98146 • \$94780 0.994388 0.98146 • \$94780 0.994368 0.98146 • \$94780 1.001755 0.98136 • \$07500 1.001755 0.98131 • \$07500 1.016558 0.98131	282100 0	+69/00°0
• 90000 0. 9873769 0. 98125 • 95200 0. 987813 0. 98125 • 95200 0. 987813 0. 98145 • 97500 0. 947412 0. 98145 • 98145 • 98145 • 98145 • 98135 • 98145 • 98155 • 98155 • 98155 • 98155 • 98155 • 98155 • 981555 • 981555 • 981555 • 9815555 • 9815555 • 9815555555555 • 981555555555555555555555555555555555555	0-007040	
-95500 0.987813 0.98152 -955000 0.92387 0.98159 -97500 0.94412 0.98149 -97500 0.94432 0.98149 -97500 0.994588 0.9413 -000070 0.99688 0.94139 -000070 1.001755 0.948131 -00500 1.010555 9.948131 -10000 1.016758 9.98131	0-008026	0.007734
• 95000 0.993 87 0.98149 • 97500 0.94412 0.98145 • 00000 0.949458 0.98145 • 00000 0.949458 0.98145 • 00000 1.000402 0.98139 • 07500 1.000462 0.98131 • 07500 1.010655 0.98131	0.008298	0-007751
• 97500 0.994.12 0.914.12 0.58145 • 0000 0.995.88 0.98145 • 002500 1.001755 0.58142 • 07500 1.0054.02 0.98135 • 07500 1.01655 0.58131 • 016758 0.58126	0.08430	0-1770
• 00000 0 984588 0 • 0 • 9845 • 07500 1 • 001755 0 • 58135 • 075070 1 • 005402 0 • 98135 • 07500 1 • 016758 0 • 98131 • 01000 1 • 016758 0 • 58126	0,007810	0.007785
-05200 1.001755 0.5139 -05200 1.006402 0.91315 -07500 1.010555 0.9126 -10000 1.016758 0.5126	0+008179	0 °00 7804
-00000 1.00555 0.04137 00500 1.010555 0.948137 1.00000 1.016758 0.58128	0.00 A655	0-007821
•00000 1•016758 0•54128 0•54128	0*004156	1%4L00*u
	0,000043 0,000043	0,007844 0,007844
(Fourthand)		
on (continued)		

:

SIRFACTANT SURFACE VISCOSITY= 0.000100 1/80 = FRUNKIN CONCENTRATION CONSTANT= 0.005000 Figure 61. YCOR data for 10⁻³-M phenol in N/10 HClO₄

FRUMKIN EXPONENT = 1.22000 ELECTRICAL DESORPTION FXPONENT = 15.00000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.000000 DIFFLSION TERM= 10000.00 SURFACE VISCOSITY OF PURE INTERFACE= 0.000001

ELECTROCAPILLARY MAXIMUM IS -0.50000 VOLTS VS. S.C.E.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

• •• • • • •

NRIGINAL OUTPUT VOLTAGE 25.00000000 MV. INITIAL DAMPING COEFFICIENT 0.56150 1/CM. WAVELENGTH 0.09397 CM. PROBE SEPARATION = 0.96690 CM.

WAVENUMBER = 66.863672 RECIPROCAL CM.

SURF ACTANT CONCENTRATION= 0.001-M PHENOL

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400

VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700

NEASUREMENTS MADE AT WATER 0.001-M PHENOL 0.10-N HCL04 / Y FR C UR Y

INT FRFACE

HCL04/HG INTERFACE-DATA OF G.BIERWAGEN (5-17-67)

ANALYSIS OF INTERFACIAL RIPPLE DATA AT POLARIZED .001-M PHENOL IN N/10

		[NPUT DATA		
•Ui	PAL VULTAGE	EB EDUENCY	ULPUT VILIAGE(4V.)	4 4 4 V V
1	-1•07500n	447 . 000000	24.70030	הר החהם אפר
2	Ουἰ∂⊆ύ•Ι-	444° 100000	24.60000	00000 -085
ŕ	-1°022000	UÚOOGE *5 * *	24° 700 0 m	00001 205
4	-1-00000	4 50. RH0000	29. 10000	394 - 80000
5	-0-975090	452.100000	2 9 . 4 ng jan	397.30000
د	-0-0200	453.500000	29. 600 000	3 90 6 000 10
~	-0- 32200	454 BUUD00	29.60000	401 - 810009
89	0.00000	4 54. 000000	30.00000	404 • 200790
с.	-J-B-L-	457.100000	39.000000	405 • 900000
10	-0.850000	458.10000	30.40000	408 . TO000F
	-D-925500	459.00000	30. 700.00	410°1'0000
21	-0*800000	454 70000	31.00000	411.890000
13	-0*112000	450.50000	31. 000000	413.30000
14		461.300000	31. 500000	414.70000
<u> </u>	000527-0-	461.999000	31.6600000	416.100000
	00000.00-	462.10000	31.400000	417.70000
10	-0-02/0-	4 5 3, 30000	31.200000	418. 600000
61 61		463, RUUUU	31. 100000	419 60000
رد ۲		464• ZURUUU	31•100000	420.300000
07		464 40000	31. 200 000	420+ 700000
12		464. 10000	31.400000	421 600000
22	000045- 0-	464.400000	31. 000000	422.100000
27 27	-0.02223-0	464 900000	31.000000	422 • 3 00000
25	000005 m-	4 64. 900000	30. 900 000	422.400000
C 7	-0-221-0	464. 700000	30. 900000	422.110000
07	00000	464 500000	30. 700000	422.100099
96	000574-01-	464 20000	30. 700000	421.900000
07	-0-00000	463490000	30. 700000	421.100000
			30. 500.000	420-40000
12		463. IUUUU	30, 300000	419.800000
25		4 5 2 20000	30,00000	4 18. 900000
33			000000 7 02	411.100000
34	-0-25000			4100001 00100
35	-0.225000	458-80000	2 R. GOODOO	000009-217
36	-0-20000	457. 90000	29. 50000	00000114
<i>L</i> t.	-0.175000	456. 700000	29.40000	409-400000
86	-0-15000	455.40000	27. 90000	407.30000
96	-0*125000	454.00000	27.800000	4 05 . 6 10010
04	- Q+ I COMON	452.600000	27.400000	402,80000
11	-0.012000	451.20000	27. 200000	400*40000
25			25.90000	397 . 600000
44			26 500000	395 500010
45	0-035000		000000000000000000000000000000000000000	392 500000
5 1 1 1			26 300000	399 60000
47	0-075000		26 60000	000000.0000000000000000000000000000000
4R	0-10000			00000.015
6.7	0-150000	434-BOOOD	24.40000 24.40000	51% E00000
50	0 - 200000	4 30- 00000		000004 245
Figure 61	(Continued)			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	、シンシューションシン			

INITIAL FREQUENCY = 447.00000

POLYNUMIAL COEFFICIENTS OF AMPLITUDE CORRECTION

-0.12046089150 04

C. 28733307350 04 -0.2931293995D 04

C.17932789580 04 -C.70461831170 03

C.1890 887852D 03 -0.3492397260D 02 C.4395962415D 01

-C.35960196920 00 0.1724337906D-01 -0.3704209668D-03

NO.	FREQUENCY	CORRECTED OUTPUT VOLTAGE	N7.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	447.C0000	28,70000	26	464.50000	27.90554
2	44P.10000	29.46763	27	464,20000	27.95992
3	449.30000	28.41590	28	463.90000	28.01417
4	450.30000	2 8+ 6113 6	29	463.40000	27.92122
5	452.10000	2R. 72319	30	463.10000	27.79134
6	453.50000	28,71281	31	462. 50000	27.62111
7	454.80000	28.51559	32	461.70000	27.66757
8	456.00000	28.71156	37	460. 80000	27.54291
9	457.10000	28.53420	34	459.90000	27 . 3200 6
10	458.10000	28. 74837	35	458,80000	27.21776
11	459.00000	28.87874	36	457.90000	26.98297
12	459.70000	29.03916	37	456.70000	27.07381
13	460.50000	28.89866	38	455.40000	26. 79033
14	461.30000	29.22065	39	454.00000	26.89616
15	461.90000	29.20415	40	452.60000	26.70197
16	462 • 70000	28.87354	41	451.20000	26.69179
17	463.30000	28.58031	42	449.70000	26.58514
18	463.80000	28.39747	43	448.00000	26.48830
19	464.20000	29+32422	44	446. 40000	26. 56462
20	464.40000	28.37846	45	444.60000	26.54650
21	46479000	28.50468	46	442. 90000	26-40819
22	464.90000	28.10484	47	440.90000	26.05274
Z3	464.90000	28.10484	48	439.00000	25.77493
24	464.90000	28.01418	49	434.80000	25.26698
25	464.70000	28.05078	50	430.00000	24.23905

FREDUENCY ** 0 FREDUENCY ** 1

FREQUENCY ** 2 FREQUENCY ** 3 FREQUENCY ** 4

FREQUENCY ** 5

FREQUENCY** 7 FREQUENCY** 8 FREQUENCY** 9

FREQUENCY##10

Figure 61 (Continued)

.*

.

, c N		CAMMA15 YPT. 1 CAL C. F.	THE TA BOW WICEL	AI DUA (CVO TI)	
-	-1-07500	103 55419	0- 101 404	0-418754	1
2	- 1.05000	395.46915	0° UC 3 144	0.427151	1.577346
pr.	-1.92500	3 a7. 564 a4	0. r03217	0.429042	9 <u>57799</u>
4	-1*10000	c { to] *Uut	0° UN4 735	1,421053	7. 5265.94
ŝ	-9.97500	4 N2 4 7045	7 a 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16114°0	0. 525594
ч О	- C. 95070	4r4.94750	7 27 6 0 0 a 1	7.41A297	9.524R4]
~	-0.92500	L07.24431	0° 013577	n . 475420	0.524144
on	- 0° 4000	404°37299	0.018633	0.41 A33 7	n •523251
0	-0°31500	4 1 1. 3 26 5 5	0° 025 150	0.424745	0.523059
2	-0.45000	413.10934	50+033405	2 101 100	n.52298
11	- 0.82500	414 . 71665	0.043632	2.412333	0.52259
12	-0-80000	415.96936	0 • 056 127	0.406603	9.52243B
13	- 0* 775 00	417.40110	0.071067	0.411619	C.523288
4	-0*75000	418° A 3847	n.08A610	0.400160	95 2 4 6 8 5
15	-0.72500	419 . 91638	0.108764	0.400744	0.526416
16	-0.70000	421 . 35361	0. 131 37 I	0.412519	0.529792
17	-0.67500	422•43267	0. I 56 024	0.423076	0.532423
18	-0.65000	423•33333	0. 182000	0.429714	0.536826
5	-0+62500	424 . 05510	0.209202	0.432385	0 . 542515
20	-0.60000	424 . 41696	0.233169	0.430496	0.549316
21	-0.57500	424 . 96039	0.2551AA	0.425817	0.556195
22	-0-55000	425 . 31889	0.272475	0.440426	0.562933
23	-0.52500	425 . 31889	0.283537	0.440425	0-567642
24	- 0, 50000	425e31810	0.287344	0. 443768	0.559375
22	-0.47500	424°95662	0. 283537	0.442419	0-567659
26	-0.45000	424°59368	0=272476	0-447787	0-562424
27	-0*42500	424 05199	0. 255 180	0-445773	0-555371
28	-0-40000	423 51064	0. 233168	0-443768	0.548407
59	-0.37500	422 . 60754	0.208202	0.447206	0.541616
30	-0-35000	422°06546	0.0182000	0.452028	0-535936
31	-0.32500	420 . 98313	0.156024	0.458382	0.531345
32	- 0* 30000	419. 54472	0.131371	0.456644	0.528375
33	-0.27500	417 - 92781	0.108764	0.461314	0.525333
34	-0.25000	416.31305	0.089510	0.469717	9.523401
35	-0.22500	414°34534	0. 071 067	0.473596	n. 521522
55	-0-20000	412.73731	0.056120	0.4A2557	0.521132
2	-04 17500	410-60228	0. 043632	0.479081	0 . 520645
F (-0-12000	408°29166	Q• 033 192	0.489967	0.520567
5	-0-12500	402°81483	0•025150	0.485890	0.520267
7	-00000	403.34255	0.019633	0 . 493384	9.521195
; ;	004/0-0-	E 1 6 1 6 00 5	0.013577	0.493TTR	0.521884
Ņ.	-0,05000	9 9 8° 24 8 3 8	0-009725	0 167 92 9	0.522951
.	00620.00-	395. 27695	0.006947	0.501693	0.523203
; :	0.00	392.492.32	0.004735	0.498717	0.524472
? :	00620-0	389° 37032	0.003217	0.499423	0-525474
		86767 9888	941200-0	0.504825	0.526900
7		3 82 8 9 12 1	904 100° D	0.5I RR41	0.528354
	0.000	199 12960	0.000905	0-529929	0.530246
7 C 4 u		312-51416	0° 000354	0.550514	0.533724
20	0.000	ひ こすたす きす ふや	0° 000 124	0.593469	9 . 538113

			(Continued)	gure 61	יד 1-1
-0°0003	-1 - 124939	-0• 00000 I	-2-319503	Ce 2 00 00	ß
£ 10000 °0-	-0-587975	2.000.002	-5-412609	0.15000	6 (7)
-0,010362	1.027840	0* 000034	-6. 797296	0•10000	60 (17
-0.000139	2.644339	9 ° 0 CO 0 4	- 8 . 489662	0.07500	47
E 0E 000 °0-	3.675257	9.000240	-8 406500	0.05000	46
-0-000652	4-366201	9.000569	-8-823333	0.02500	45
-0,200,00-	3-769006	0-001280	133891 - 9-	0"0	14
-0°005413	2.491088 A DESTER	10/ GDD *0	- 064 V44 / 00 - 8- 004 802		1 H 2 4
-0-010186	2.872282	0.011367	-6.494369	-0.07500	4:
-0.018390	2.736794	9°021 ¤80	-6.305143	-0-10200	40
-0°0 31785	3.680981	0. 040685	-7.111652	-0.12500	2
-0.052475	2.219124	0.073064	-4.859699	-0.15000	38
	10101100	0-126676	-4-046980	-0-17500	37
-0.177021	3.039370	0.340459 0.311570	-4-084414	00422 0-	5
-0.241293	2.503087	9.527680	-2,553459	- C. 25000	36
-0-314485	2-801236	0.787521	-2.172265	-0.27500	E.E
-0-474152	2.7055893	1.568947	-1•537167 -0-691385	00425-00-	1 6
-0.553239	2.939058	2.094246	-1.0660BB	-0-35000	00
-0.627519	3. 162092	2.690038	-1.156333	-0-37500	- 0 - 10
-0° 750487	3.236989	3.922847	- 1° 2 70 5 31	- 0°42500	12
-0.794290	3.005727	4.430192	-0.538651	-0.45000	26
-0.822062	3.112462	4.769911	0.244879	-0.47500	25
-0- 821567	- 10420 Ter		787 782	-0-50000	5 2
-0° 794097	3-124156	4. 430 625	0.459389	-0.55000	22
-0.750470	3.614199	3. 923365	1.253666	-0.57500	21
-0.493962	3 437695	3.319491	1.869527	- 0.6000	2
-0-6776 -0-		500400 #2	1 • 0 3 4 7 5 1	-0-62500	
-0°474744	3-673057	1. 569 50 3	2 • 046235 1 - 867330	-0-67500	11
-0.393297	4.013157	1.132929	1. 795377	-0• 10000	15
-0-314475	UE 555E *5	9.788044	2.071551	-0.72500	15
-0.241324	4. 332852	0.524191	2.558716	-0-15000	14
-0-177104	107161 •		101146 43	-0-77500	13
-0*0 ¤2 72 0	4.018321	0.125895	3. 249155	-0°82500	=:
-0° US2574	3.9 9 209.8 2	7+073257	3. 524 823	-0-85000	10
-0°0 150-	7. R51 395	3. 040813	4. 764280	-0.87500	o
-0-01 8445	3-951402	0.071957	4. 00A1A0	00006-0-	. c
	3 848647		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0, 075 00	C P
-J.AG 2787	3.071741	0. CC2 757	1, 507 J 19	-0.97500	<u>س</u> ،
-0°01377	3.976343	3-001296	4.2771A2	-1.0000	4
-0°000424	3.79099 3	9.000571	4.3ª6021	-1.02500	m
-1 "UUU" 1-	000000	1 2000 "1	5. 1 P9606	-1-05000	2
1000	4. 35394]	1.0000	5, 734930	- 1. 07500	•
	14(E)-F XPT.	100000000000000000000000000000000000000	RELEI-FYPT.	P CI VUI TAGE	5,0

רא.	PCL . VOL TAGE	Y1-FXPT.	41-MUJEL	M3-EXPT.	X 2- MUDEL
1	-1.07500	0.091314	0.981251	0.006263	0.007803
2	-1.05000	0. 989906	0.991292	0.006389	0.007977
3	-1.02500	0.048006	0.901310	7.015417	0.007852
4	-1.00000	0.987814	0.981 740	1.005311	0.007843
5	-0.97500	0.947264	7.991380	0.006250	0.007829
6	-0.95000	0.987674	2. 981407	2.006256	0.007915
7	-0.92500	0.987906	0.991437	0.006363	0.007805
8	- C. 90000	0.947229	0.981473	9.004257	2.007794
9	-0.87500	0.987843	1. 99L 507	0.006352	0.007790
10	- C. 85000	0.986338	0.981564	0.006737	0.007783
11	-0.82500	0.985871	0. 581 631	0.006167	0.007793
12	-0. P0000	0.984798	7.981725	0.006091	0.007799
13	-0.77500	0.984642	0. 981 853	0.00156	0.007803
14	-0.75000	0.984731	0.582032	0.095985	0.007824
15	-0.72500	0.993972	0. 982277	0.005993	0.007852
16	-0.70000	0.983601	0.582599	0.096170	0.007890
17	-0.67500	0.984034	0.983000	0.096327	0.007944
18	-0.65000	0.983808	0.983498	9.006427	0.008012
19	-0.62500	0.983865	0.984044	0e 006 46 7	0.008099
20	-0.60000	0.983777	0.984635	0.006437	0.008201
21	-0.57500	0. 982 945	0.985208	0.006 368	0.008309
22	-0.55000	0.982626	0.985686	0.006587	0.008409
23	-0.52500	0.992161	0.986005	0.006587	0.008484
24	-0.50000	0.981928	0.986117	0.006637	0.008510
25	-0.47500	0.981781	0. € 86 005	9.006617	0.008485
26	-C.45000	0.980936	0.985688	0.006697	0.008408
27	-0.42500	0.980134	0.585212	0.006667	0.008334
28	-0.40000	0.980727	0.984641	0.006637	0.008196
29	-0.37500	0.980243	0.984050	0.006688	0.008394
30	-0.35000	0.980374	0.983494	0.006760	0.008005
31	+0.32500	0.979936	0.98300B	0.006855	0.007939
32	-0.30000	0.980763	0.582598	0.005429	0.007891
33	-0.27500	0.979291	0.982284	2+ 006899	0.007849
34	-0.25050	0.978999	0.982040	0.007025	0.007820
35	-0.2250D	0.977149	0.981866	0.007083	0.007796
- 1112	-0.20000	0.918289	0.981 /30	0.007217	0.007787
31	-0.17500	0.977685	0.981636	0.007165	0.007781
20	-0.13000	0.977139	0.981568	0.007328	0.007781
29	-0.12500	0.975210	9.981524	9.007267	0.007781
40	-0.03500	0.975442	0.981476	1.007379	0.007793
41	-0.07500	0.975725	0. 781 440	0+007385	0+007804
42	-0.03500	0.978077	0.981404	0.097447	0.007815
44	0.0	0 076301	Ue 981 361	9.007503	0.007828
45	0.025.00	0 073454	U= 981 347	9.007459	7.07846
46	0.05000	0 074024	0. 951 312	0.007469	0.007862
47	0.07600	U+7/4030	0.981273	0.007550	0.007982
41	0.1000	90714210	0.441215	9.907760	0.007903
40	0-15000	0.975573	7.581145	0.007926	0.007927
50	0.20000	0 079 574	0.00078	0.0095233	0.007976
	0020000	0.9107/4	0.0440314	1.016816	0.008035

Figure 61 (Continued)

ELECTRICAL DESORPTION EXPONENT = 15.00000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.00000 PIFFUSION TERM= 10000.00 SURFACE VISCOSITY OF PURF INTERFACE= 0.000001 SURFACTANT SURFACE VISCOSITY= 0.000100 1/R0 = FRUMKIN CONCENTRATION CONSTANT= 0.005000 Figure 62. YCOR data for 5 x 10⁻³-M phenol in N/10 HClo₄

INPUT DATA FOR MODELED BEHAVIOR: MCDIFIED FRUMKIN ISOTHERM

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 DRIGINAL OUTPUT VOLTAGE 27.70000000 MV. INITIAL DAMPING COEFFICIENT 0.50500 1/CM. WAVELENGTH 0.09359 CM. PROBE SEPARATION = 1.01200 CM. WAVENUMBER = 67.132287 RECIPROCAL CM.

SURFACTANT CONCENTRATION= 0.005-M PHENOL

FRUMKIN EXPONENT= 1.22000

ELECTROCAPILLARY MAXIMUM IS -0.52500 VOLTS VS. S.C.E.

MEASUREMENTS MADE AT WATER INTERFACE C. 005-M PHENOL 0.100-N HOLOG INTERFACE

HELPATHS INTEREACE--DATA OF GORIERWASEN (5/17/67)

ΔΑΛΛΕΥΝΙΚ ΠΗ ΙΝΤΕREACIAL RIPPLE DATA ΑΤ ΡΠΙΔΡΙΖΕΌ Ν.ΟΝ5-Η ΡΗΕΝΝΕΙΝ ΝΖΙΟ

5400574075	000000000	194 5 70000	10000 . 795	10000 001	401*100000	666005 .504	405.40000	404.90000	4 18 6 6 7 7 9 7 9 9 9	410, 296930	411°60000	412.40000	413. 700000	414.47000	415.70000	415,9000A	416.510000	416.790990	417. 170000	417.300009	417.500990	416.840000	416.90000	416.49000	416.100000	415.000000	414.500000	413 • 300000	412.700000	411 .3 00010	410°20000	4 UK & 2 10001	401 - 300000	403* 400000	401 4 4 0000	399. 90000	397.510000	395.300000	392. 400000	390.4 0000	387.890000	395.00000	000000°185	379.00000	375.70000	368.90000	361 . 600000	353. 30000	
ι Αγραγικά τη της της της της της της της της της	DEFONE FC	LLLUJL *2 C	2 7 STOPPO	24.00033	24 - 300000	0Ci001°62	2 4e 200000	29.300000	23. 20070	29.40000	79. Indana	29.00000	27 . 900300	27. 500000	27. 600000	27.730300	27. 700909	27.60000	2 7 . R00000	27.600900	27.50000	27.60000	27.40000	27.200390	27.100390	25.e R00000	24. 500000	2 5. 300000	25.40000	25.50000	25 . 200000	25. 00000	24- 50000	24-20000	24-000000	23. 50000	23.400000	21.30000	23. 100000	23.00000	22+RC0300	22 . 50000	22+ 300 900	22.000900	21- 600000	71. 10000	20.40000	19. 600000	
4 5 1 • 1 مارتم من 14 1 • 1 • 1 • • • • • • • • • • • • • •	4 57 20000	453 60000	454, 70000	454° 40~~00	456.990000	457 . an 0 <i>0 J</i> h	454 , 90000	4 5 5 8 ΛΟΛΟ Ο	4 6 A. 50 0 0 0	451,100000	46 l. 600000	452.10000	462 . 500000	462, 900000	4 63. 300000	463.500000	4 63. 50000	463 . 700000	463 - 700000	461 . 700000	463.60000	463.400000	463 . 200000	463.000000	462.60000	462.400000	461. 500000	4 6 C. 800090	460. 100000	454.300000	45% 300000			454-10000	452, 70000	450° 70000	449. 200000	447 . B00000	446.40000	444.90000	443 。 400000	441 . 600000	44 C* 3 000 00	4 3 R 60 7 0 00	436.70000	432. 700000	4 2 H 400700	423.660000	
PUL & VOLTAGE - 1. 050000	-1-025000	-1-000000	-0° 37 5000	-0.95000	-0* 42 2000	600006-6	-7 . 875000	- 0 - 850000	-0*65200	-0 - F0rn00	-9.77 5000	-0. 75 CONA	-0*125000	-0-70000	-0-675000	-0.450000	- 0° 62 5 00 0	-0. 60000	-0-275000	-0.550000	-0-525000	-0-50000	-0-475000	-0+450000	-0-425000	-0*40000	-0-375000	000055-0-	-0-325000	-0-300000				-0-175000	-0-150000	-0-125000	- 0-1 0000	-0.075000	- u* 020000	-0.025000	0.0	0.025000	0 020000	0.07-000	0* 100000	0.150000	0.20000	0* 25000	
40 . 1	ı (.	. F	t	ŝ	¢	7	α	c	C1	11	12	13	14	15	15	17	18	61	00	21	22	23	24	25	26	27	28	67	06	16		36	5	36	37	38	39	4U	41	42	43	44	45	46	47	4.8	49	50	

Figure 62 (Continued)

FIRE Their I

POLYADMIAL CREFFICIENTS OF AMPLITURE CERECTION -0.1208A0815D 04 FEFOU 0.2278A02015D 04 FEFOU -12783278048D 04 FEFOU -0.1783278048D 04 FEFOU -0.1840687852D 03 FEFOU 0.18400878520 03 FEFOU

	CORRECTEN OUTPUT VILTAGE 55, 30778 25, 30778 25, 00733 24, 95210 24, 965210 24, 24453 24, 19164 24, 19164 24, 19164 24, 19164 24, 191028 24, 19164 23, 63217 23, 64517 23, 64517 23, 65010 23, 650100 23, 650100 23, 650100000000000000000000000000000000000
	FREQUENCY 462.60000 462.60000 465.50000 466.50000 466.50000 466.10000 456.10000 455.10000 455.10000 455.10000 455.10000 455.10000 455.10000 455.10000 455.10000 455.70000 455.70000 455.70000 455.70000 455.70000 455.70000 455.70000
FRECULENCY ** C FRECULENCY ** 1 FRECULENCY ** 1 FRECULENCY ** 5 FRECULENCY ** 5 FRECULENCY ** 5 FRECULENCY ** 6 FRECULENCY ** 6 FRECULENCY ** 0 FRECULENCY ** 1 FRECULENCY **	а П С С С С С С С С С С С С С С С С С С
-0.12746.04159 74 -0.28734307450 74 -0.28731293880 74 -0.27312938870 20 -0.28908878520 73 -0.2896878520 73 -0.4395601 05 -0.4395601 09920 00 -0.4395601 09920 00 -0.37042 796680 -01	C CR AEC TED DUTPUT WIL 27.553864 27.553864 27.553864 27.553864 27.553864 27.553864 27.553864 27.553864 27.553864 27.60769 27.60769 27.60769 26.95597 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 26.950778 25.601979 25.601973 25.601972 25.60173 25.60
	FR FQUENCY 451.0000 451.0000 453.60000 454.70000 454.70000 455.90000 455.90000 455.90000 461.10000 461.10000 461.10000 463.50000 463.50000 463.70000 463.70000 463.70000 463.70000 463.70000 463.70000 463.70000

ł

Figure 62 (Continued)

\$

THUCK) V For Th	7.532590	1.51110	0.530183	1.529306	7.529445	0.530582	0.533878	0-542645	0-545772	0- 67 6806	2010 2021	133-11-1 101400-1			0.827759	2211CC0	0.870571	0.025010	0.873880	0.971805		010010		365166 0	19012C00	0-825110	0-828623	0.921.851.85		05 2 8 2 9 5 0	055758-0	0.013285	0-71758	0-623578		1000000	0-530470	0.525492	9.524243	0 • 5 2 3 9 A B	0.524937	0.525157	0.5 26095	0ª 526994	0.578757	0° 52 6635	7.531342 5.551342	00745798 0 200220	1041500	J. 54 1404		
ALPH4(FXDTL)	0" 505000	0-510945	1-517476	0.5231.83	0. 518477	0_514041	n= 526723	0.529000	0. 530.82 9	0.53P572		0-548736	0-555266	0-561386	0-574554		0-574766	0_574764	0.579609	0 572474	0-579600	0.587561	0. 57707			0-590767	0.598010	0.606051	0.600265	0-620188	0.630811	11000000	0.638811	0-641150	1544441	0-653502	0.654521	0.665585	0. 662 92 0	0.661091	0• 663 9 R I	0.66244B	0.665797	0.673150	5 L 28 J 0 0 0	1261920	0 210/2/			6.29 T.5.1 *C.		
THET& FRN4 MNDFL	0 ° NIK393	0.024 150	0, 03556 C	9,0515Al	0.073935	0 . 104445	0.148396	0.20995	0• 297823	0.418545	0.554334	0-664729	D- 740043	0- 790 744	0.825674	0_ 850351	0 868024	0_880576	0. 889547	0.895418	0. 898 769	0. 849859	0.898769	0- 895 418	0_889547	0-880676	0. 868024	0-850351	0-825674	0. 790 744	0-740093	0 664 72 8	0.554336	0.418545	0.297923	0.209952	0. 148 38'6	0.104885	0.073835	0.051591	0.035462	0.024350	0.016343	0.007080								
GAMMA(EXPT。)CALC.F=C	795,95172	107Ê0°85i	400° 29793	492 . 2174 A	C 8 7 7 1 7 0 7	4 C4. 076 R4	407 . 83209	4 0 9. 5 94 3 0	411.18361	412.41993	413.48415	4 4 4 3 557 1	415.25245	415 . 96143	416.66832	417.37959	417.735a4	417 . 73694	418 . 09165	418.05433	418.09155	417.91224	417-55762	417.19907	41 6. 84061	4 16. 1 2A 3 3	415.05885	414.16785	412.92526	411.68136	410.26272	408.49597	406.73463	404.97703	402.87179	401-12052	398 . 67915	3 95.2 0012	392.60571	14161 906 1502 202	381•18318 301 31000	58212 ¢100	504409731 570 503 025	1 2 2 0 4 2 1 C	10704 275	271 - 2022 - 17 E	3642.59733	357.46140	349-5753		on t i nuod)	OII CTII MCM
POL &VOLT AGE	-1.05000	-1-02510	-1.90000	-0-97570	-0.95000	-0-92500	- C. 900 JO	-0.87570	- 0.85000	-0.82500	-0.402.90	-0.77500	-0.75000	-0.72500	-0.70000	-0.67500	-0.65000	- C. 62500	-0-60000	-0.57500	- C.55000	-0.52500	- C. 50000	-0.47500	- 0.45000	-0.42500	-0*+0000	-0.37500	-0-35000	-0.32500	-0" 30000	-0.27500	-0-25000	-0.22500	-0*20000	-0.17500	- C.15000	-0.12500	- 0.000	-0.500		-0.00	0.03600	0,050,00	0.7500		0-15000	0-20000	0-25000		U) (J (U)	nr 20 alu
•L2		~	m	*	Ś	ç	-	8	σ	10	11	12	13	14	15	91	17	18	19	20	21	22	23	24	25	26	27	28	59	30	16	32	33	34	35	36	37	88	<u>ب</u>	0	73	y r		1	4	5	84	67	20	2	, F	<u>н</u> ч

כֿ	POL VOL TAGE	2 F (F) - E K DT		IN (FI-EXPT.	
-	-1.050A9	50c les **	6622(U) 6	2 87465 °C	4 HEE U
i NJ	-1-02500	222133	J. 0(7813	2.334171	-7-007567
ون ۱	-1.00000	5 5 7 7 2 5 3	0.01777	5.022050	-0.016571
un 4	- 0. 95000	4. 692 924	0.037071 0.037071	1841541 1945-1841	-0-075536
o 1	-0-92500	044 4CE . 4	0 C C A A A	1.52196A	-0.15P115
4	00000-0-	3. 10če *	0 • 467 40 1	1. 94599 J	-0-326731
6	-0.97500	3. 278710	1.099792	9 - 521656	-0.561974
ە ز	-0-85070	3.473930	2.595572	0.500312	-1-2922nB
16	06526 -0-	2. 695765 1 - 470500	5,795417 10,202280	-0.117085	-2. 145005
5	- C. 77500	n=332448	13.647693	± + 0 1 1 € • 1 -	7 2 2 5 0 F = 9 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
19	-0,75000	0.651056	15.163605	-1.601069	-8.135720
14	- C. 72500	-1.004419	15.624776	-2 • 34 751 A	-9.406699
5	-0-70000	-0.799440	15.638561	-3.147138	-10+233562
16	-0.67500	-2. R73125	15. 493216	-3-773415	-10.7651 83
5	-0-62500	210842 -2-	1 5 1 2 8 U 7 2 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	-3-80,000	-11-107536
19	- 0-60000	- 4. 0 220 73	14.994739	-4-147189	-11-471410
20	-0-57500	-5-921292	14.892242	-3-643616	-11.558A84
32	-0.55090	-6-212-67	14.830624	-4-255438	-11.606424
23	-0-50000	-6-979050	14-826094	-4-049067	-11_603679
54	-0.47500	-9, 510 80 A	14.884687	- 4. 377100	-11.554389
25	-0.45000	- 8-764761	14-984156	-5-086636	-11.465307
27	-0.40000	-11-243106	15-385403	- 4 • 42 78 7	-11.320636
28	-0-17500	-14-267124	15.466423	-6-100601	-10-752824
29	-0.35000	-14.717245	15.608114	-6.376166	-10.221509
, u	-0.32500	-21.025345	15.591917	-5. 97192 A	-9.396450
22	-0-27500	- 10 - 18 E - 0E - UK1 (H) - 22-	13-110-5	-7.692628 -3.877700	-4.128184
5	- 0.25000	-27-873540	10.268209	-5-1 9057A	-4-144630
36	-0.22500	-37-463905	5. 780062	4-257975	-2-385873
e ug	- 0-20000	-38-921033	2. 597430	3.998961	-1.290909
3 6	-0-15000	-43.716481	1.095111	12.929663	-0.660516
30.	-0-12500	-73.146648	0-201200	43.735635	-0. 325616
99	-0.10000	-19-293097	0.098950	45.043369	-0-075084
6	-0.07500	-15-741348	0.039594	44 <u>.</u> 334071	-0.035401
	-0-02500	13-6667	0-017770	43。/X4986	-0-016459
4	0.0	-13-517202	0.003371	43.997781	-0.003357
\$	0.02500	-9.6535A6	0.001429	44.224826	-0.001475
1	0.05000	-21.189478	0. CC0588	45.623774	-0-0006 25
-	0-10000	000447.10-		51.363370 4(a)00344	-0-000260
6	0-15000	-21.137479	0.000010	55.531756	-0-000017
5	0.20000	-18-840036	0.000000	66-691937	£00000-0-
50	0.25000	-12.697459	-0.00000	94.637124	100000-0-

-EXDT.	6mm/200°0 /24/00°	-007610 0.07873	1.49773.P D. 0.779.L	\$007799 0.07852	-007723 0-007854	007657 0.07873	-007846 0-007975	-007890 0-06059	0.007907	004022			004272	-008362 0-012575	-008550 0-01261	-008596 0-012393			-008636 0-012262	-008528 0-012235	-008436 0-012710		-008606 0-01225		- 008783 0-012555		- 008908 0-012346	000028	- 009076 0-012466	000238	-009397 0-012480	. 0094 R4 0.0 12149	•009516 0.011017	0,009551 0,000322	•009632 0.008404	1+009735 0+00R055	•009750 0•007922	•009915 0•007961	009875 0.00875 0.007843	•099847 0•007841	1.009889 D.007852	009868 0.007859	0 00918 0 0 007873	1.010027 0.007A89	•010103 0°007909	-010238 0-007927	010448 0.007947	010705 0.07990	0.008039	. 011 702 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
κίλ ไ∃เมืศ−ไλ	0* 5 HI SVS	י ט ∎ מושנים 10 י	0. 581339 0.	0.991349 0.	n. 981455 J	0_581577	0- 941 42 0	0.582386	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.935829	0. 036.878	0-985304	C 747682.0	0.982862	12220	0 611280-0	0 C 81 946	O ORIGE V	0- CHI 797	0 981 763	0 081 747	0. 581 74.7	0 121737	0.581763	0. 081 791		0.981934	0-982097	0 987360	0-982855	0 993737	0. 985 29 2	0 586853	0.985836 0	0.583630 0	9.982396 ·0	0 . 9Al 837 0	0.981601 0	0.981478 ŋ	0.581412 0	n.981358 n	6 641324 0	9.941295 0	0.981262 0	0.981221 0	0. GAL187 0	0.981147	0.981064	0. 580973		20101010 CILL CILL CILL CILL CILL CILL CILL CIL
Y]-FXP1.	0•941365	0 .04528	21¢8060	9,447467	0.947272	0.996840	0-945766	0.984948	0-945170	0-984060	0_ 582 778	0-941561	C_ GR1 7RD		0-940424	0-579051	0.979426	0.978.015	0.978389	0 - 977451	0.976982	0.976.093	0144890	0-975812	0-976140	0-075157	102210	0-974271	0-974138	0-972592	0.972512	0.970879	0. 971 383	0.969276	0.969182	ŋ . 968033	0.968065	0.963129	0.962506	0.961839	0 • 962898	0 . 961338	0 • 961 26R	0.960414	0.962517	0. 962407	0.962468	0-962334	0 962346		
POL + VOLTAGF	- 1•05000	-1.02500	-1-00000	-0-97500	- C. 95000	-0-97500	- 0-90000	-0-97500	-0-85000	-0-87500		-0-77500	-0-75000	-0-72500	-0-7000	- 6-67500			-0-60000	-0-575.00		-0-52500		-0-47500			-0-40000	-0-37500	-0-35000	-0-32500	-0-3000	-0.27500	-0.25000	-0*22500	-0*20000	-0.17500	- 0.15000	-0.12500	- 0.10000	-0.07500	-0.05000	-0.02500	0.0	0.02500	0.05000	0-07500	0. 10000	0-15000	0.20000	0.75000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
•UN	-	~	m	¢	5	-	•	æ	. 0	01	22	:2	1 1	1	5	191	1		6		5			36	5	22		28	54	06	31	32	33	34	35	36	37	38	66	40	41	11 1	6 4	49	45	46	47	40	54	9	?

Figure 63. Data from YCOR for 10^{-2} -M phenol in N/10 HClO₄

1/80 * FRUMEIN CONCENTRATION CONSTANT= 0.005000

SURFACTANT SURFACE VISCOSITY= 0.000100

SURFACE VISCOSITY OF PURE INTERFACE= 0.000001

DIFFUSION TERM= 10000.00

MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.00000

ELECTRICAL DESORPTION EXPONENT = 15.00000

FRUMKIN EXPONENT = 1.22000

• • **- - - - -** • • •

ELECTROCAPILLARY MAXIMUM IS -0.50000 VOLTS VS. S.C.E.

SURFACTANT CONCENTRATION= 0.010-4 PHENOL

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

WAVENUMBER = 68.125114 RECIPROCAL CM.

WAVFLENGTH 0.09223 CM. PROBE SEPARATION = 1.01800 CM.

INITIAL DAMPING COEFFICIENT 1.09903 1/CM.

BRIGINAL OUTPUT VOLTAGE 11.00000000 MV.

VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400

MFASUREMENTS MADE AT WATER 0.010-M PHENOL N/10 HCL04 /MERCURY

INTERFACE

HCL04/FG INTERFACE-DATA OF G.BFERWAGEN (5-17-67)

ANALYSIS OF INTERFACIAL RIPPLE DATA AT POLAR 17ED .010-M PHENOL IN N/10

54 840000	CONT.TTE	193 . 600030	746.310015	100009-105	394. 10001	3-0-0-0 2 * 96 €	198. 50000	700000 C004	000000-904	404 40000	407.00000	4 09 4 9 0000	404 - 20000	411. 300000	412.200000	412.60000	413~50000C	413 800000	413.80000	412.80000	414 000000	413 2 0000	412 . 800000	412 . 300000	410-70000	409.80000	408 80000	000001 *04	000006-909	403 . 500000	402-00000	398 - 300000	396.400000	394.20000	392.100000	389 - 40000	384 -70000	382. 20000	379.40000	376. 30000	373 \$ 20000	366. 600091
(N)TPJJT VALTAGF(44V。) 14.04000 14.300400	1 4.400700	17.40000	17-100000	17-000000	17. 100000	17.300300	17. 500000	1 7- 50000	17. 50000	1 7. 600100	17.800000	1 8, 000000	1 9- 50000	19.90000	20.40000	20.50000	20,00000	20 • 200000	20-000000	19.80000	19-30000	19. 100000	1.8+ 900000	18. 700000	18-30000	1 9. 000000	17.90000	1 7- 600000	17-300100	17+10000	17.100000	16-90000	16. 800000	16. 700000	16.500000	16- 100000	15. C0000	15. 700000	15. 500000	15.400000	0000004-41	000000 °C1
ER EQUESICY 451-400020 459-700000	440.7001	4 6 Ze 2000 99	4 4 4- 000000	465. 2000C	466. 4000CN	467 . 600000	4 5 8, 700000 2 4 0 000000	4 7 C. 900000	471. 90000	4 72. 90000	4 73. 500000	4 74-1 00000	4 74. 3000 AG	4 74. 6 000 00	4 74 BOD 50	4 /% 100000 475, 300000	475.30000	475. 300000	475. 3000.00	4 75.400000 4 75 100000	4 74. B00000	474. 60000	4 74. 1 00000	4 73- 600000 6 73- 1 00000	4 72. 4 000 00	471. 70000	4 70 - 900000	000000	468. 40000	467+ 300000	4664 400000 4452 400000	464e 00000	46 Ze 800000	461.40000	4 54 40000	456 80000	455.100000	453.300000	451.40000	444°50000		4 39. 100000
PNL_VULTAGE -1. 125000 -1. 20000	-1.150000	-1.07600 -1.076000		-1.025nrg	-1-00000	-0*975000	-0.00000	000006-0-	-0.875000	-0-850000	-0.825000	-0-77500	-0-75000	-0" 72 5000	-0* 70000	- 0.65000	-0.625000	-0*60000	-0*575000	0000553-0-	-0.500000	-0.475000	-0.450000	000474-0-	-0-375000	-0+350000	-0-325000	-0.275000	-0.25000	-0-225000	-0-175000	-0.150000	-0.125000	-0.00000		-0.025000	0.0	0.025000	0.050000	0.00000	0.150000	0.20000
• 5 7 7	et, -	u t	- -		٤.	،		12	13	14	15	17	11	19	02	22	23	24	25	22	28	29	0E	25			5 K		38	30	14	42	6.4 	**	99	1.4	84	49	05	10		1

14PUT 94T4

Figure 63 (Continued)

INITIAL FREQUENCY = 412.70000

POLYNNHIAL	COEFFICIENTS OF AMPLITUCE	CORREC	TION	
	-0.12086089150	04	FR FOUENCY **	0
	0.28233302350	04	FREQUENCY **	1
	-0.29312939850	04	FREQUENCY ##	2
	C.1793278º68D	04	FRFQUENCY **	3
	-0.70461831170	03	FREQUENCY ##	4
	0.18938878520	03	FREQUENCY ##	5
	-0.34923972600	02	FREQUENC Y**	6
	0.43959624150	01	FREQUENCY **	7
	-0.35860196920	00	FREQUENC Y##	P
	0-17243379060-	01	FREQUENCY##	9
	-0.37042096680-	03	FRFQUENCY ++ 1	0

ND.	F REQUENCY	CORRECTED OUTPUT VOLTAGE	NO.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	461.40000	16.43049	29	474.80000	16+09074
2	459,70000	16.87980	29	474-60000	15.94694
3	450.70000	16.86827	30	474-10000	15-8 3670
4	462.20000	15.98532	31	473-60000	15-72526
5	463.00000	15.45281	32	473-10000	15. 69701
6	464.00000	15.35406	33	472-40000	15.52070
7	465,20000	15.14548	34	471-70000	15, 341 82
8	466.40000	15.1 1414	35	470-90000	15-34237
9	467.60000	15-16828	36	470-30000	15-14840
10	468 70000	15-05529	17	469-40000	15-06976
11	469-80000	15-11461	3.8	668-60000	15-08616
12	470, 90000	14-99952	10	467.30000	15.02220
13	471-90000	16.89468	Ă0	4610 90000	15-02527
14	472 . 90000	16.87621	41	465-40000	15.12550
15	473-50000	16.97912	42	465 00000	15 17440
16	473-90000	15,10419	43	462.80000	15- 20101
17	474-10000	15-83670	44	462.0000	15 24 30 5
18	474-30000	14. 11403	46	401840000	130 24 10 3
19	474-60000	16 . 6 149 7	40		15.20025
20	474-80000	17.00783	40	4584 50000	15-14183
21	475.10000	17.05627	40	455 10000	13+10335
22	475.30000	14.94351	40	455.10000	15. 15211
22	475 30000	10.00371	49	453.30000	15+01076
23	475 10000	10.00571	50	451.40000	14.96188
	475.30000	10.18044	51	449. 50000	14.99938
27	+13.30000	10.01430	52	447. 70000	15.11882
20	+75+40000	16-43627	53	443, 50000	14.96592
21	⇒7>•10000	16.13916	54	439-10000	14.55615

VOLT AGF • 125 00	5.4M¥ 4{FXPT。}{ALC = F=0 396=26392	THETA EROV VINFL D. MRTRI	46-744153716/ 0_704890	1. 5404 21
00.00	303.30459	PPC [10.0	752720	365033-6
5000	1 95. 08795	0.003555	7.67950	0. 5547AC
0000	397.61040	0.009153	0.731863	0.549671
7500	398 . 95505	0.014125	0-765144	0.547688
5000	400 ° 65714	0.022 047	0.771441	7.545158
2500	01102 *205	0°033594	0.7A4P79	1.54462B
0000	404° 75654	0.05051 A	0 TA691 2	0.543567
75.00	406. R 203 T	0.075342	0 . 7.8 3400	D.543294
5000	4 C8, 71044	0.111.922	0.790745	9.543666
0000	410,01/11	0.196541	0. TA6RA2	0.546875
25.00	4 12° 5 11 24	0°750509	0.704390	0.557929
	2 12 040 C		04210800	0.593230
	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 1340 C	1 6 9 7 9 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	041/10*0
	41.402/11 417, 72808	2160H0 00		0.132394
7500	41 R.1 DAR3	0- 820444		5 C C T # 1 # D
1000	418-4402	0.866237		
2500	419-00055			
				100871 0
7500	419-88627	0. 033 177		
5000		027 204		21051100
2500	4 20 - 2 30 8 0	0- 460054	765029-0	241911 °C
0000	420-22850	0-945302	0.484178	
75 00	420-22377	0.949041	1 - 40 30 53	1 1 7 7 7 4 6
5300	420.39343	0.951543	0.704535	040112-0
2500	419.85974	0.952981	0.727454	0-709255
0000	419.33398	0-953451	0-725405	0.700395
7500	418,98005	0.052981	0-734225	0-709850
5000	418 . 10383	0.951543	0.741038	9-710174
2500	417.2842	1409490	0.747975	0.710953
0000	416°35672	0*945302	0 . 749742	0.712524
7500	415.13314	0. 940054	0.760839	0.714223
5000	413 , 91109	0 . 932 AR5	0.77225	0.716552
2500	412 . 52395	0. 923177	0.772190	0.719472
0000	411.47A04	166606*0	0 . 7A 4 68B	0.723524
0067	403°91936	0. 891 863	0.789801	0.729713
0000	408°1 9443	0.866427	0.788733	0. 733866
0000	90457 9004	0. 829644	0.792835	0.739288
	404° 13534	0- 774 205	0.786912	0.742456
		2149890	0.786169	0.732241
	100000004	00 248 LUY	192 192 0	0.574743
	10000 0060 64366 706	507 CBC 0	20-781282	0.592116
	2 1 0 2 2 0 L C	60902°0	81481.0	9.556490
	40780 °646	0• 100 64 1	16E 181 °0	0°545354
	101618 1A6	0.111922	0• 785114	0.542237
0002		00 01 03 42	0.787601	0.541264
0000	21///0 -CHC	P12 060 0	0.784447	0.541655
	100412 9705	0.457944	0.793654	ŋ. 542121
	5 14°47203	0.022087	0.796853	0.542963
0060	1 / 6. 2 / 3 6 5	0.014326	0.794399	0* 5442 04
	575059515 57513 335	0 00153	9.746609	J. 545599
0000	2 1 2 4 4 0 2 5	0.003555	0.796543	0.548290

Figure 63 (Continued)

۰,

1	A () A ()	22	12	50	49	64	1	46	\$ 5	\$.	42	1	•	6E	38	37	9 E	35	34	5	32	د د 1	ы с О	21	2		20		2	22	12	20	19	la	17	16	15	*	1	1,	10) 08	7	o -	J	*	ω,	~ •	-
06.002 00	00001-0	0.10000	0.07500	0.05000	0.02500	0.0	-0.02500	-0.05000	-0.07500	- C.10000	-0.12500	-0.15000	-0.17500	-0.20000	-0.22500	-0-25000	-0.27500	-0.30000	-0.32500	-0-35000	- 0-37500		-0-42500	-0-45000				-0.57500	-0.6000	-0-62500	- 0- 65000	-0-67500	-0.70000	-0.72500	-0.75000	-0.77500	-0. R0000	-0-32500	-0-85000			-0.95000	-0.97500	- 1. 00000	-1.02500	- 1.05000	-1.075.00	-1.10000	-1.15000	-1.20000	PIL VIL TAGE
2.031461	-0.766959	628 57 5 •0	1.729086	3.145769	4.623905	5.309450	6 。455 28 1	7=644074	7 . 363793	8.067268	8.722051	9.172792	10.196310	10.114083	10.658463	10,799156	11.219837	11.CO1638	10. 346 336	10.669159		10-275964	10-287004	Source 1	C 0 F 0 S 1 6 O L	545.677 001	10 130013	50 434 43 50 44451 64	150165 6	6694696	10-623035	9.722116	9. 684 386	10 • 471 370	11.506702	11.806460	12.572368	12-874004	13-040034	102 044 431	130 740 01		12.447678	12.47AF	12.307436	12.261330	b [5623°21	12.C44725	11.003734	12.303357	12.773345
N00000	0-000070	n= 000503	0-001 ZAO	0.003185	0.007817	0.019151	0.047515	0. 121655	0.328916	0. 957 339	2.846388	6-317664	8-329819	1 582 393	8-319438	7.994465	7-710685	7. 483435	7-305290	7-170687	7-04034	761700 - 4	740070 - 7	6- 004444	0.005470	17482 40	050416.40	5-952442	7.010258	7.090427	7.197738	7. 337407	7 . 518591	7.752348	B. 043044	8.376696	B-645249	A 101717	6-744-00 C 10007 02			0.127967	049064	010394	0.07917	422600° L	0.001209	0 • 000 51 I	3.000071	60000000000000000000000000000000000000	
-35.191545	-37.454000	-29-390130	- 71 . 1 744 91	-30.834774	-26.038259	-20.600807	-19-640308	-15-724052	-15.899304	-13-393707	-12-648688	-12.062129	-9.311057	-10-485851	-10-431886	-9-579071	- 6- 94 84 90	-7-066267	-7-116684					22 4401 02 -	216250.02	EB()548°1-	0.75757R	-9.632020	-0-494576	-0-029098	1.981525	0.788553	0.618670	0.998124	2.729201	1-961681	1-177669	2-842304			404246°2	3-071234	3.425359	3.459892	3.AU4151	4.350380	4 B 4 95 0 A	5 6 7 7 25 A	7.051592	4. / JJ4J - 9. / 75411	IN(E)-EXPT.
-0-000012	280000°0-	-0.00053N	016100-0-	EN 1600.0-	-0-007636	-0-01 82 04	-0-04 3546	-0-105762	-0-263879	-0-678180	-1.712603	-3.614323	-5-405921	-6-297357	4.056.69-9-	-6-712663	-6-710626	-6-677126	-6-635040			14861 6 90-	5 151 DC 00-	212106.0-	-6.499421	-6-504434	-6.515685	-6.530R36	-6.553371	-6.583108	-6.619922	-6.661587	-6.705161	-6.742186	-6-746857	-6-6-5950 6	70 CUEE - 9		16 LA 1 +T-	-3-642419	-0.266070	-0.106757	-0-044011	-0.016417	EELL 00" 0-	5 c c t u U * 0 -	UELE 00-0-	6 2000 - 0 -		2 Luuuu - 0 - *1 - 000 *0 - *0 -	IN (FI - NONEL

•UN	POL • VOLT AGE	Y1 - EXP T.	ነት ሥጠይቢ	Y 2- FXPT.	אי -איווודן
1	+1.12500	1。058949	7,5 GT797	2+5 010 =0	151400-0
~	-1.20000	1.032460	0°0000	0.00954	F A09 00 00
ę	- 1.15000	l.019584	1° 041 004	0.009 6R	0.00B017
4	-1-10000	1.010450	i€0136°0	0 . n10743	0,007973
ſ	-1.07500	1. Cn6854	0,941112	7.011231	0°007054
¢	-1-05000	1.004716	0.981166	0•011324	7 FPTA0.0
~ 0	-1-02500	1.002698	0. 941 206	0.011521	0.007921
c 0	- 1- 01000	4841001	047186°L	165110.0	0.00700
10	-0.95000	1,000219	0.5813.68	0,011607	416200°0
11	- C. 92500	106666 0	0-981589	0-011551	0107962
12	00006-0-	1.000343	D. 5 2132	0.011661	0.008123
13	-0.87500	1.000120	A. 083579	9.011762	0.008642
14	-0.85000	1. 003770	n. 985216	9.011782	0.009R69
15	-0.42500	107666 *0	0° 6 84 927	0.011480	0" 01 0477
2:	- 0* 80000	0.995312	0. 984 365	9-01156 0	0*010821
2	-0-11200	0. 096639	0 \$ 84031	0°010879	0°010142
E .	- 0* 75000	0 998212	9.983847	1. 01 04 4 B	0.010731
6	-0-12500	649164 J	0. 983782	0.010186	0.010631
2:	-0-0000	60 € 266 ° 0	0.983732	0.009949	0.01 0561
15	00619-0-	0.000 000	0.943695	0.09910	0*010211
25	0,425,0-	100665 0	0.000.000	0.00027	0°010687
26			10 4 13 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	716600*0	
, K			047604°N	0010100	604010°0
3.4			7 17 10 10 10 10 10 10 10 10 10 10 10 10 10		0 01010 0
24	-0-52500	440 040 U	1 10 00 4 4 0	246010-0	04-010 0
28	-0-50000	0.988950	0.583628		TEOLOSO VERSION
52	-0.47500	0.989074	0.983624	0-010778	0.010380
8	- C.45000	0.987947	0.983625	0.010878	0.010389
31	-0.42500	0.987060	0.983627	0.010979	0.010403
32	- 0-40000	0.986892	0 . 98362 A	0.011005	0,010427
E :	-0-37500	0. \$85.890	0.583634	0.011168	0•010455
* ;	- 0-35000	0.985129	0. 983 644	0-011335	0,010497
5	-0-32500	0.084192	0. 983 662	0.011335	0.010538
2	-0.30000	0 984335	0.943689	0.011518	0*01 0597
	0061200-		0.983732	0*011263	0.010673
		0 041033	0.983820	0+011578	0.010753
5		0 081 803	5 16505 °C	199110-0	0°010020
14	-0-17500	0.987486		12211100	0.010735
24	-0.15000	0.980752	0.59146	0.011494	0-00-899
£3	-0.12500	0.980362	D. 983547	0.011468	0.008683
4	-0.10000	0.979878	0. 582.082	0.011428	0.008159
45	-0-07500	0.978731	0.981530	0.011469	0.007996
\$	- C. 05000	0.978773	0. 981323	0.011525	0.007949
1.4	-0-02200	0. 977296	0.981233	0.011561	0.007939
€ (*	0.0	0.976843	0. 981 177	0.011515	0.007946
7 Q	005200	0.975471	0-581140	0-011650	0* 007954
8:	000500	0.974449	0° 981 104	0.011697	170700.0
7.6	0051000	0 974224	0. 981 065	0.011661	0.007987
25		0 • 4 f# 403	0.960524	0°011547	0.008009
			017707 07	000110 0	000000000000000000000000000000000000000
!			220.104 +11	6 4021 N.O.	6410001.ªO

Figure 63 (Continued)

ANALYSIS OF INTERFACTAL RIPPLE DATA AT POLARIZED .0.30-M PHENOL IN N710

HCL04/HG INTERFACE-DATA OF G.BIERWAGEN (5-17-67)

MEASUREMENTS MADE AT	WATER	/ MER CUR Y	IN TED BACC
0.030-4 PHENDL	N/10 HCL04		(HIERFAUE

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 15.30000000 MV. INITIAL DAMPING COEFFICIENT 0.52100 1/CM. WAVELENGTH 0.09099 CH. PROBE SEPARATION = 1.01200 CM.

WAVENUMBER = 69.051997 RECIPROCAL CM.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

SURFACTANT CONCENTRATION= 0.030-M PHENOL ELE CTROCAPILLARY MAXIMUM IS -0.57500 VOLTS VS. S.C.E. FRUMKIN EXPONENT= 1.22000 ELECTRICAL DESORPTION EXPONENT = 15.00000 MAXIMUM SURFACE COVFRAGE X R X TEMPERATURE = 10.000000 DIFFUSION TFRM= 10000.00 SURFACE VISCOSITY DF PURE INTERFACE= 0.000001 SURFACE VISCOSITY DF PURE INTERFACE= 0.000001 SURFACTANT SURFACE VISCOSITY= 0.000100 1/ R0 = FRUMKIN CONCENTRATION CONSTANT= 0.0005000

Figure 64. YCOR data listing for .03-M phenol in N/10 HClO₄

 A-D-17	~ *	
 MP'II	·/0	1 0

NO.	POL • VOL TAGE	EREQUENCY	OUTPHT VOLTAGE(MV.)	ፍል ቀ ቀላ
1	-1.250000	468.400000	15.300000	344.600000
2	-1.200000	469.310000	15.300000	370.900010
3	-1.175000	469.800000	15.400000	377. 200000
4	-1.150000	470,200000	15.500000	377-200000
5	-1.100000	470. 900000	14.500000	382. 500000
6	-1.075000	471,000000	14.400000	395.400000
7	-1.050000	471.300000	14.400000	397.700000
8	-1.025000	471. 8000CO	14. 500000	390-000000
9	-1.000000	472.300000	14.500000	392 . 000000
10	-0.975000	472-800000	14-400.000	396-000000
11	-0.950000	473.500000	14-300000	395-600000
12	-0.925000	474.00000	14-300000	397 - 100000
13	-0.900000	474.700000	14-200000	398-60000
14	-0-875000	475-200000	14-100000	398 800000
15	-0.850000	475-200000	14.000000	401 100000
15	-0-825000	475-900000	13-900000	401 100000
17	-0-800000	476.000000	13 700,000	402.0100000
19	-0.775000	476-200000	16 000000	402. 100000
19	-0-750000	476 200000	14.100000	403 900000
20	-0. 725000	476 200000		405.400000
21	-0.700000	476 500000	14.400000	405.000000
22	-0.675000	476 500000	14.400000	405.100000
71	-0.650000	476.600000	144400000	405.700000
25	-0.635000	4 78. 900000	14.400000	405.800000
2 T 78	-0.600000	477.000000	14.400000	406.200000
23	-0.800000	477.000000	14-400000	406.000000
20	-0.575000	477.000000	14. 200000	406.300000
21	-0.550000	4 76. 800000	14.300000	406.100000
20	-0.525000	476.600000	14.200000	406 • 100000
29	-0.500000	4 76. 300000	14. 200000	405.700000
30	-0.475000	476.100000	14.000000	405.400000
31	-0.450000	475.800000	13.800000	404.900000
32	-0.425000	475.300000	13.600000	404.500000
33	-0.40000	474-800000	13.500000	403.500000
34	-0. 37 5000	474.400000	13.300000	402 . 900000
35	-0.350000	473.500000	13.200000	402.000000
- 36	-0.325000	- 472,800000	13.100000	401.300000
37	-0.300000	472.200000	12.900000	400.000000
38	-0.275000	471.40000	12.600000	398.900000
37	-0.250000	476.600000	12.500000	397.500000
40	-0.225000	469.900000	12.300000	396.300000
41	-0.200000	468.800000	12.100000	394 . 700000
42	-0.175000	467.700000	12. 100000	393-000000
43	-0.150000	466.600700	12-100000	391 - 200000
44	-0.125000	465.600000	12-000000	389-800000
45	-0.100000	464.400000	12-000000	387-300000
46	-0.075000	463-200000	12-000000	385-700000
47	-0.050000	461-800000	11.900000	383.200000
48	-0.025000	460-400000	11.700000	381-200000
49	0.0	458-900000	11- 500,000	378.600000
50	0.025000	457-300000	11-600000	376-100000
51	0-050000	455,800000	11.200000	272 200000
52	0-075000	454-000000		
53	0-10000	452 100000		370.700000
54	0.150000	+72010000		367+400000
55	0.200000	++De ++00000	10.300700	361.300000
56	0 250000	4848 300000	10.000000	354.790000
	Ue 2 7 000 0	4 × 4 5000C0	9.500000	347. 300000

Figure 64 (Continued)

200

•

INITIAL FREQUENCY = 459.40000

	COPRECTED OUTPUT VOLTAGE 13,42946 13,09865 13,09865 12,05653 12,05684 12,73819 12,73819 12,73819 12,73819 12,73819 12,54410 12,73819 12,54410 12,54410 12,54410 12,24955 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,27956 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,22057 12,22056 12,22056 12,22056 12,22056 12,22056 12,22056 12,220577 12,220577 12,220577 12,2205777 12,220577
	FREQUENCY 475,10000 475,10000 475,10000 475,10000 475,10000 474,40000 474,40000 472,20000 472,20000 471,40000 471,40000 471,40000 461,400000 461,400000 461,400000 461,400000 461,400000 461,4000000 461,40000000 461,40000000 461,400000000000000000000000000000000000
C TTON REFOUENCY ** 0 FREFOUENCY ** 1 FREFOUENCY ** 3 FREFOUENCY ** 5 FREFOUENCY ** 5 FREFOUEN	4 66 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
FWTS OF ANPL ITUDE COURF -0.12046 FROTES OF -0.2223330350 04 -0.223330350 04 -0.23432 938950 04 C.17432 78560 04 C.1990786 00 -0.1745150 01 -0.359624150 01 -0.359624150 01 -0.3596240 00 0.172437906 00 0.17240 00 0.172400 00 0.1724000000000000000000000000000000000000	CORRECTED MUTPUT VOLT 15.20000 15.20000 15.2000 15.2007 14.1413 14.1413 14.11413 14.11413 14.11413 14.11413 14.11413 14.11413 14.11413 14.11413 13.799560 13.799560 13.44595 13.44595 13.55918 13.55
MIAL COEFFICI	FFE GUENCY 468,410000 469,80000 469,80000 4710,20000 4711,90000 4711,90000 4711,90000 4711,90000 4714,90000 4775,200000 4775,200000 4775,2000000 4775,2000000 4775,200000 4775,200000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,2000000 4775,200000000 4775,20000000 4775,200000000000000000000000000000000000
WA TC a	0

Figure 64 (Continued)

.

.

,

•UU	פער • עיזר דאני ב	י זערע (ב x bl °) וערן ניים ע	THEIA FORM WINEL	1 DHQ f C K PTL 1	l Jantun je He Je
- (-1*25000	102,22515	0,005 519	0.521717	1° = 77104
N F		HC 1 1 9606	1-017554 0-020213	0.577989 5 521050	1.57035
•			1 1 1 H 2 H 0	5 10400 D	
, u	-1-10000	10110 00000000000000000000000000000000		0.501114 0.501114	197401°1
ۍ د	-1-07500	396. 51913	0-17930	5 7 7 5 5 6 6 6	1.5500A7
•	-1.05300	3 97.01699	0.2 94 32 a	0.600720	0.556791
œ.	-1.02500	397 . A514.8	0°483515	0.537351	1. 596735
σ	-1-00000	3 9 A. 6 A4 4 T	0.674290	9.400A34	0.626335
21	-0.97500	399.51586	0. 789 441	0.611174	0 . 62690A
11	-0.95000	400 68206	0° 853967	0.672987	n. 621743
21	-0.92500	101°1140	0.894413	0.626513	1.5 165 35
51		402° 0161	116026°0	0.6384414	9.512452
t u		5 1 7 1 ° 6 (1 6		0.048461	0. 509192
		010109-707		5 55550 D	69090940
	- 0.80000	404-85108	1571104 PO	0-1001124	124404 0
81	-0-77500	405-19708	0-972471		101010
19	-0-75000	405-20001	0.976208		
20	-0.72500	405.20840	0.979.022	0.635316	
21	- 0. 70000	405, 71258	0.981134	0 - 63 7474	0-598713
22	-0.67500	405.88071	0.982699	0-638194	<u>1-597900</u>
23	-0.65000	406° 38529	0. 983 924	0.640356	7-597957
54	-0.62500	40 6+ 55356	0.984581	0.641079	0-597495
25	-0*60000	406.55356	0.985019	0.641078	0. 597666
26	-0.57500	406.54793	0 ° 9161	0.654893	0.597295
27	- 0" 55000	406°21430	0.98501A	0.646521	0.597325
28	-0.52500	405•87513	0.984581	0.652014	0.597163
29	-0* 50000	405 . 37089	0.983524	0.649855	0.547401
DE	-0.47500	405.02911	0.982699	0.662435	0. 597689
16	-0*+2000	404°51939	0.9AL134	0.674531	0.598160
21	-0*42500	403 6743 R	0.979022	0.685350	9. 598366
22		40 Ze 8 3335	0. 97620R	0.689379	0-599374
		51 J21 9204	11421600	0* 700984	0.600155
		52640 004 526 × 325 × 305	0 907487	0. 702075	9. 600894
		144 4/101 101 4 101	U. 460761	0.704568	0.601850
	-0.275.00	101 - 40 - C	0.0100 JU	0. 11 50 / 5	45605°C
	-0-25000		7 C & 0 C & 0 C	195550	02000000
40	-0.22500	394.62717	0.894413	0.746,945	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
14	-0.20000	3 92. 7 983 9	0. 853 96 7	0.755565	0-617323
42	-0.17500	3 90° 981 7A	0. 788441	0.74B169	9-522101
m :	-0*12000	389.16929	0.674290	0°740862	0 - 620582
.	-0.12500	387-52127	0. 483 51 5	0.742503	0.540345
		C 27 7 C 8 C 2 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8	0, 294328	0.734741	0.559985
	-0-05000	2810105-185		0° 12 12 0	0.551711
84	-0-02500	379-01569	0.070916	0 - 734 AFT	
5	0-0	376-57503			
50	0.02500	373.98462	0-026212	0-742392	
51	0*02000	371.55983	0.017554	0. 751533	0.554039
52	0-07500	364. 66178	9.01077 8	0.759717	0.554973
6	0*10000	365.61080	0.006518	0.777394	9.556501
	0000000	3544 F1226	0-002266	00620200	0.559491
		17057 975 3755 3755	0.000734	0-9410444	0.562628
0	0006.200	61 021 0646	122 GAU *0	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.564054
	C C C	(Cont & nued)			
ゴディィ					

202

ł

°UN	POL. VOLT AGF	9 E(E)-c%p1 *	RF(=)-409FL	IM(F)-EXPT.	1400m-(3) M00EF
-	-1.25000	12.133663	7.00045	9.453851	260000-0-
~	-1-20010	11.8 39 7 74	3. 004667	4 . T06285	-0.000 6A 5
۴,	-1.17500	11.148166	1.0Cl 822	7.499635	-n . 501941
4	-1-15000	11.279533	J= 00400 4	7.699626	-0°004964
Ľ1	-1-10000	611c18-01	0. 641 674	5 . 1 9 25 56	-0.034816
s,	-1-07590	10 - 126583	1.3750 B	4.791041	-0.126371
- 0	- 1- 00000	9, 360856	0.529215	3.693566	-0* 453700
Þ 0	-1-00000	7 570785	1 = 400 31 3 3 = 002 32 0	200017 1	-1°514607
÷ 1	-0-97500		2. C 77 35 K	1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	011029 67
1	- 0, 95000	6e 118339	2 766710	-0-459636	-2.5P9159
12	-0.92500	5. 200076	2.593519	-1. 394591	-2.47.8974
13	-0-40000	4.922935	2 . 466865	-2.216027	-2,388236
14	-0.87500	4.31R510	2.375134	-3,302097	-2.318350
5	-0-85000	1.477054	2. 307499	-5 . 754107	-2.264760
91	-0-82500	2.441948	2. 259364	- 6. 075965	-2.225977
11	00008-0-	1 • 640113	2° 222 603	-1.924843	-2.1 95723
81,	- 04 7 700	- 2.600720	2, 195.299	-R.574674	-2,173039
7 0		616928°Z-	2.01.74.331	-7,992335	-2.155422
2 6		202044979	C DC 861 07	-1.038692	- 2ª I 42025
;;		-0-404015	21214182	1678717 L-	766761-2-
1		-7-036045			13903102 L
			11125102		202122-
10		-7-205146	20102102	- 10 100100	91691192-
26	-0-57500	- 9- 025 502	2.125385		340711-6-
27	- 0-55000	-10-067951	2-125789		
28	-0.52500	-1 2. 703 725	2-127811	-9-146758	-2-116034
59	-0.50000	-13.562173	2.131430	-8.724106	-2.119035
30	-0.47500	-14.067333	2.137442	-10.610069	-2.124115
31	-0.45000	-14.172992	2 . 145636	-12.586305	-2+131001
20	-0.42500	-19+292940	2.156467	-14.562821	-2.140343
	-0*+0000	-17,326775	2. 171136	-15-303654	-2.152280
t 1 1		-18 • 20 3 / 12	Z. 191153	-17-959370	-2.168970
n 4		-25-07111	200020 C	-17-4 33727	-2.190020
		17401/4/CT-	800767 °2	11414141- 100000000000000000000000000000	- 2. 21 8824
		100001076-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-20-44-53 -34 34444	-2-257734
39	-0.25000	-39, 318 243	2.456232		- C - 20 02
04	-0.22500	-38. 88823	2. 582341	-34-535634	-2.468723
4	- 0*26000	-48° 9 39 1 40	2.753059	- 79. 438275	-2, 577152
42	-0-17500	-53.658212	2.956516	-31°621787	-2.666187
n .	00051*0 -	-5 2° 51 4230	2.984720	-25.327055	-2, 51 6698
		204 004 0 20-	1.051301	-19-524764	-1.5070A1
24			07467C •D	84/ ¥0 ¥ 24	
;;		-44.774886	0-041377	+7000C+ -1 -	-0° 03067
48	-0.02500	-55-603617	0-013872		
64	0.0	-53 . 738044	0.004934	-19.826833	-0-40400
50	0.02500	-56.570820	0.001799	-15-744097	-0-001816
51	0.05000	-46.000261	0.000657	-27-074457	-0-000675
52	0.07500	-61 <u>。</u> 297523	7FS 000 •0	-25.396590	-0-000249
53	0.0001.0	-53 342050	0. 000R3	-42 . 578664	16000-0-
\$;	0.15000	-41 a 649441	0° 00000	-56.948830	-0*000012
<u>،</u>	C.2000	-33.341836	100000	-62.229376	100000-0-
95	0005200	-11 a 847547	-0-00000	-97.D78522	-0•00000

•UN	P.OL . WILT 36F	Y]-F XP T.	У 1− м Эр Е L	Y2-FXPT.	א2- מיזהגן
	-1-25030	1-049447	0- 980 735	A.007565	
~	-1-20000	1.024595	ALBORO O		
	-1.17500	1.01 94 85			0.00805
4	-1-15000	1.021222	3. 980938	7.07536	0.00.005
\$	-1-10000	1. 019072	0. c A] 05 3	0.009550	0.808
9	-1.07500	1. Cr7 Pag	1, 981 143	1. 00A559	FURING C
~ (- 1.05200	0° 008 214	0° 941 551	9.008700	0*008149
no	000001-	0.594438	947613 0 000000	7. 008651	0.008591
-	-0-07600	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1026450	0.008701	0°0000
21		61086 40	7168401 0.987015	0.00003 0.00003	190600 0
12	-0-92500	0. 985 787		220400-0	16400°C
13	- 0- 90000	0.984981	0.982878	000045	
14	-0.87500	0.983849	7.582.841	0°00398	08600 0
15	-0.85000	0 • 9RD 904	0.982820	n.009500	0.00876
51	-0-82500	0°441350	0. 5 92 R02	70 09675	0,00R74
11	- 0. 80000	0.980299	9. 982 789	0*008a3	0.00872
<u>c</u> ;		0.979208	0. 942 748	7.009604	0.00870
25		50 2 4 1 K 5 0	0. 5 82 775	0.004502	0*006693
25	- 0° 70000	0.475552	0. 942742	0-009201	0.00867
10	-0.47500	0 010000	0+582175	0.009232	1.008672
::				242600.0	0.00866
40	-0.67500	0 - 975 960	0.00775	202020 V	0.00055
52	-0-60000	0.976.21	0. 482 TTI	00000000000000000000000000000000000000	2000000 2000000
26	-0-57500	0-975700	712680.0	1076700°0	
27	-0.55000	0.975362	P 202 20		
28	-0.52500	0 a 974 544	0.982776		
29	- 0. 50000	0.974277	0.982775	0-009411	0-00865
30	-0.47500	0° 974180	9.592776	0.009593	0-008664
16	- C.45000	0 °974154	0. 982776	0.009768	0-00867
32	-0.42500	0.973069	0. 582 7A 0	0,009925	0.00857
E i	-0.40000	0。973429	0. 982 779	0*000410	0.00869
	- 0*37500	0.973237	0. 982 785	9.010152	0.800.0
6	00056"0-	0. 971 718	0. 582 794	0.010167	0*00871
<u>,</u>	-0.10000	0.970531	0" 982 80 9	0.010205	0°00873
- 6		222116 0	0.582823	0.010364	0.00876
			064246 0	0.010620	0.00879
.04	-0.22500		1 00 704 00	4001000	0,00889
14	-0.20000	0+ 970 140	0. 983079	67010°0	154800°0
42	-0.17500	0. 969770	0a 983144		
¢3	-0.15000	0.969655	0. 983221	0.010729	0-009110
4	-0.12500	0.968971	0° 982645	9.0 1075 3	0.008567
÷.	- Co 1 0000	0.970205	J. 981590	0.010640	2.800.2 C
		102494-0	0*211500	0.010530	n• n0enne
r a		0.969636	0° 481126	0.010523	0° 00 798
•	0.0	0 940120	0° 5 HI 079	0.010642	0.00749
	0-07500	0-140400	0 001007	0.010/00	0.800
15	0-05000		100 100 100	14/010-0	10800°C
52	0-07500	0.968759			0 00000
53	0-10000	0-969296	0. CR0807	0 011360	C0800 0
54	0.15000	0-969594		0-011555	
5 5	0.20000	0. 969657	0. 980735	9-011744	0-008160
56	0.25000	0.969035	0.949549	9-012265	0-00-01
•					

Figure 64 (Continued)

:

ANALYSIS OF INTERFACIAL RIPPLE DATA AT POLARIZED .060-M PHENOL IN AVIO

HCL04/HG INTERFACE-DATA OF G.BIERWAGEN (5-17-67)

/ MERCURY

MEASUREMENTS MADE AT WATER 0.060-M PHENCL N/10 HCL04

INTERFACE

.

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 32.2000000 MV. INITIAL DAMPING COEFFICIENT 0.83002 1/CM. WAVELENGTH 0.09180 CM.

0.060-N PHENOL

WAVENUMBER = 68.444219 RECIPROCAL CM.

PROBE SEPARATION = 1.01000 CM.

- -

N 0 **U**

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

FRUMKIN EXPONENT = 1.22000 ELECTRICAL DESORPTION EXPONENT = 15.00000

ELECTROCAPILLARY MAXIMUM IS -0.63750 VOLTS VS. S.C.E.

MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.00000

SURFACTANT CONCENTRATION=

DIFFUSION TERM= 10000.00

SURFACE VISCOSITY OF PURE INTERFACE= 0.000001

SURFACTANT SURFACE VISCOSITY= 0. COOLOO

1/9C = FPUMKIN CONCENTRATION CONSTANT= 0.005000

Figure 65. YCOR data listing for .06-M phenol in N/10 HClO₄

INPUT DATA

N'].	POL . VOL TAGE	FREQUENCY	DUTPOT VELTAGE(NV.)	GAMMA
1	-1.200000	454.300000	47.00000	370-400000
2	-1.150000	457.900000	47. 00000	376-200000
3	-1.100000	459.800000	47. 900000	391.300000
4	-1.075000	461.000000	49-000000	383-400000
5	-1.050000	462.300000	49.000000	395.600000
5	-1.025000	463.200000	48.200000	387.500000
7	-1.000000	464.300000	48.500000	389-100000
8	-0.975000	465.100000	45.000000	390.600000
9	-0.950000	465.900000	47.800000	392-100000
10	-0.925000	466. 500000	47.100000	393.200000
11	-0.900000	467.100000	47.000000	394.400000
12	-0.875000	467.600000	47.200000	395. 300000
13	-0.850000	469.100000	47.500000	395.200000
14	-0.825000	468.400000	47.500000	396.800000
15	-0.800000	468. 500000	45.500000	397.300000
16	-0.775000	468.600000	45.500000	398.000000
17	-0.750000	468.800000	45.600000	395.400000
18	-0.725000	469.00000	45.900000	398.800000
19	-0.700000	469.200000	46.000000	399.100000
20	-0.675000	469.300000	46.000000	399.500000
21	-0.650000	469.500000	45. 200 000	399.800000
22	-0.625000	469.700000	46.200000	399.800000
23	-0.600000	469.700000	46.500000	399.700000
24	-0.575000	469.700000	46.400000	400.100000
25	-0.550000	469.700000	46.200000	399.600000
26	-0.525000	469. 500000	46.100000	399.600000
27	-0.500000	469.200000	46.100000	399.400000
28	-0.475000	469.100000	46.100000	399.100000
29	-0.450000	468-800000	45.00000	398.600000
30	-0.425000	469.400000	46.100000	398.100000
31	-0.400000	467.900000	45.000000	397.800000
32	-0.375000	467.500000	46.000000	397.200000
33	-0.350000	467.000000	45.900000	396.200000
34	-0.325000	466-400000	45.800000	395.300000
35	-0.300000	465, 700000	45.100000	394.600000
36	-0.275000	464.900000	45.000000	393.400000
37	-0.250000	464.100000	45.000000	392.100000
38	-0.225000	463.200000	44. 500000	390.900000
39	-0.20000	462.100000	44.000000	389.700000
40	-0.175000	461.200000	43.800000	368.000000
41	-0.150000	460.00000	43.200000	386.400000
42	-0.125000	45A. 700000	43.100000	394.600000
43	-0.100000	457.600000	42.700000	392.900000
44	-0.075000	456.100000	42.000000	380.700000
45	-0.050000	454 800000	41.800000	378.700000
46	-0.025000	453.000000	41.500000	376.300000
47	0.0	451,200000	41.000000	374.200000
48	0.025000	449.200000	40.600.000	371.500000
49	0.050000	447.400000	40.400000	368.800000
50	0.075000	446.200000	40,200000	366.000000
51	0.100000	444.400000	39. 600000	362.800000
52	0.250030	430,60000	35.000000	340.910000
53	0.20000	434.000000	36.900.000	349.600000
54	0.15000 0	440.400000	39, 500000	356.500000

619 40519
ŧ
C RE DIFICA
FUL TIAL

	CORECTED MUTPUT VALTAGE 39, 55117 39, 55117 39, 55117 39, 55117 39, 55145 39, 75425 39, 75425 39, 75425 39, 75425 39, 52044 39, 52044 39, 52044 39, 51336 39, 51346 39, 51346 39, 51346 39, 51366 39, 513666 39, 513666 39, 514666666666666666666666666666666666666	38.1577R
	FREQUENCY 468, 10000 468, 40000 468, 40000 467, 60000 465, 40000 465, 40000 465, 70000 465, 70000 465, 70000 465, 70000 465, 70000 465, 80000 465, 80000 464, 40000 464, 400000 464, 400000 464, 400000 464, 400000 464, 400000 464, 400000 464, 4000000 464, 400000 464, 4000000 464, 400000 464, 40000000 464, 400000000 464, 40000000000000000000000000000000000	440° 40000
FCT104 cordifyerves r cordifyerves cordifyerves cordifyerves cordifyerves cordifyerves cordifyerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCYerves FREQUENCY	14.15 2010 2010 2010 2010 2010 2010 2010 20	4
<pre>VIS fr AmpLITUNE Cras 0.2873126364150 f4 0.287312536450 f4 -0.26312536450 f4 -0.27405480 f4 -0.17451831170 f3 -0.34079780540 f0 -0.3407972501 02 0.43459224150 f1 -0.37660194470 f0 0.173423174090-01 -0.37642096.80-01</pre>	CDRRECTED CuirpUT VOL 43.50113 43.10597 43.21351 43.21351 43.21351 42.7597 42.7597 42.7594 42.7594 42.7594 40.6796 40.71537 40.71537 40.71537 40.71537 40.71537 40.71537 39.25991 39.22993 39.22993 39.22993 39.22993 39.25502 39.25502 39.25502 39.25502	39.33523
NH AL CREFFICIE	FFE QUE KY FFE QUE KY 455, 31000 451, 50000 451, 50000 451, 50000 452, 31000 455, 91000 455, 91000 455, 91000 455, 91000 455, 91000 455, 91000 455, 91000 455, 91000 455, 91000 455, 71000 459, 71000 450, 70000 450, 700000 450, 700000 450, 7000000 450, 700000000000000000000	469.20009
ר אי	2 5	27

Figure 65 (Continued)

•

. ċ

,

ł .

UN	B-1 INT ICE	17 11 11 11 11 11 11 11 11 11 11 11 11 1	THE TA FERM WINEL	VI DHA (F VO TI V	
-		347.14564	0.123677	AL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 55 26 10
- 6	- 1.15700	10.772	726126	216125.0	0 566.74 0
		1 L L L L L L L L L L L L L L L L L L L	0- 757 44 C	7 5 3 5 5 0	7 50000 5
т. - т	00520-1-	300.10032	0.94173	9. 538745	1. 5 A545 D
ŝ	-1-050-10	3542°205	l l l ba "J	n. 546743	3.591754
ŝ	-1.02500	303e8753	7. 073174	r.548295	0.578446
~	- 1. 00200	395.77479	J ° a¢3534	0 ° 51033	9.57667C
æ	-0° 415 00	397.07124	0 457400	n. 544593	600472 * 0
•	-0-050-0	101.4 1075	0.967764	7.573036	9.57340R
្នះ	-0.92500	399 . 42858	0. 973 955 2. 222 22	9-592492	0.572339
=:	00000	41/13	1247474 0 000166		71775 C
22		571579104 507 1 507	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.547104	5/50/5-0
<u> </u>		6 010-7 42 014 6 010-7 450 30	0, 987460		H 1669696
		402.81222			0-548877
16	- 0- 775 00	4.02.97351	0,0400	0.640749	FF (842.0
11	- 0- 75090	103.31401	0-991196	0.639079	0-567846
18	-0-12500	403° 65640	0.991755	0.634793	9-567577
61	-n- 70000	403 . 99718	2 1 2 2 PP 0	0.633999	0.567431
20	-0.67500	404° 1 6720	0° 44550 2	D.634673	0.567093
21	-0.45000	4 04 5 0905	2 45 24a	0.631745	0.566963
22	-0°52500	404 B 493	0, 992642	0.633112	0.567175
23	00009-0-	4 N4 851 98	0* 005 205	0.626704	0.567292
54	- 0+ 575 00	404°85103	21c200	9 6 2 B R 3 5	0.566881
25	-0.55000	404 . 84933	0.041 756	9.633112	0.567454
26	-0.52500	404°50920	0° 901 108	0.633491	0.567289
27	-0.50000	403° 99404	0° 490 219	0.631947	0.567252
23	-0.47500	403 82805	0.989035	7.631167	9.56755B
2	- Cr45000	403° 31748	0.987469	0.631282	0.567895
	000074-0-	81 65 970 4	0 00000	0.626427	1°268161
4 5	- 0.000	6106/ °104	0,000000	0. 62 521 2	0.568153
		4 U Le 1 1 7 5 1	0 031011	0+6422433	9.559645
		300 2003 000		04612040	9•569561 5 535355
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 953600	0.01919	5450/5°C
		705 - 711 50		46 100000	
16	-0.25000	3 95. 364 93	420 F 24	0-622036	0° 57440 6
38	-0.22500	393+84847	0. 891 711	0.627374	0.576657
66	-0. 20000	2 4 0 0 ° 1 0 1	0.841033	0. 631 66 B	0.579346
;	-0.17500	390. 49227	0• 752 644	0.630629	0.582652
41	-0.15000	348 48378	0.587455	9.637017	0.577296
72	-0,12500	180.31H4H	0.359384	0. 631 51 7	0.5558AB
4 7 7		3 81 00704	0. 123677	0.634494	0.548072
5.5	- 0- 05000	370, 84076	0101010		
44	-0-02500	3 76. 885.01			
1.5	0	3 73 9293	0.078125	0.647.055	0.548235
48	0-02500	370.66134	0.017004	0-641389	0-549016
67	0.05000	367.73311	0.010149	0.638522	0.550043
ŝ	0.07500	36 5. TR 672	0.005369	0.638590	0°551844
15	00001 0	362.87399	n. 003452	0.646724	7.553474
22	0.25000	340.91413	0. 000 789	0.740097	1.563773
ŕ.	000000	344°431 RB	0° 000 425 000	0.693993	0.559431
÷	00051.0	3 56 e 4 440 5	0•001046	0.66193A	A.556270

_

°U"	P רו V ייע אל P רו	RE{E]→FXPT。	be { כ] -מטעבן	Iu(E)-FxpT.	1au(;n~ (3) n1
~	- 1. 20200	9 . 489335	1 ° 0 24.74 1	5.560930	-0" いろにやなら
2	-1-15000	8. 310 53 K	1 ° 4 E 4 9 2 U	3 . 379454	-u* t] tod2
~	-1-10000	6.791542	1 . 55783	3°474795	-1°4]5043
4	-1.07500	6 . 757361	1. 392729	3.677724	-1.344394
5	- 1.05300	6. P43100	1.4799.5	2.511453	-1.760575
×	-1.02500	6.480452	1.213440	3.198510	-1°19644
-	-1.00000	6. 769 591	1.167131	2.345945	-1°1=073n
œ (-0.97530 0.05000	6.822136	1.126107	1. 445932	-1°118114
т (,		4010/0°			145445000
	00000 0 -		1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	1000000 V	206//1001-
:2		6.2 F 2 F 2 F 5 F 6 F 5 F 6 F 6 F 6 F 6 F 6 F 6 F 6	1.05920	0. 707 10 F	1-064.1-
12	-0-85000	6-759506	1.052042	0-853076	-1.0204
. 4	-0-87500	6-695315	1 - 046602	0.716103	-1-044640
	-0-900-0	6-694326	1-042259	-0-102950	-1-040562
91	- 0- 115 00	6 492070	1.038975	-1-297498	-1-37475
17	-0.75000	6.385731	1.036635	-1.356643	-1.035281
18	- 0.72500	6. IR7052	1.034995	-1.315243	-1.033746
19	-0.70000	6.232179	1 • C33 93 5	-1.2470 39	-1.032750
20	- 0.67500	5.912364	1.033195	-1.582799	-1.032066
21	-0.65000	5.910858	1 . 033 095	-1.454372	-1.0319R7
22	-0.62500	6.437445	1.033315	-1•039542	-1.032707
23	-0*5000	6.432287	1.033676	-0 - 755429	-1-032505
24	-0.57500	5 d 0 8 9 9	1.034495	-1-327949	-1-033309
22	-0.55000	6 . 702 786	1.035767	-0 - 779444	-1.034515
26	-0.52500	6.253542	1°037409	-1.239760	-1.036052
27	- 0. 50000	5 . 734554	1.039640	-1.59A677	-1°038139
28	-0.47500	5.915216	1.042926	-l•399351	-1+041227
29	-0.45000	5 B94005	1.04704R	-1 . 406248	-1.045085
ŝ	-0.42500	5.4923B3	1.052429	-1.503404	-1°020103
E 1	-0-40000	166 169 4	1.059 059	-2.196203	-1.056952
22	00 41 5 00 -	4. 2681/1	1 • 069571	-2.198941	-1.066045
23	00000		1 • 0 EZ 42 5	-1.4433556	-1-0-10-1-
1 u		4. CTUC42	C 20 7 C 1 C 20 7 C 20	121600.5-	-1°0636
	- 0, 375.00	61161290 5 036665	769971 1 1 1 1 2007		-1•118957
			7 E 7 7 I C - 1		C/ +1C T •1 -
. 6	-0-22500	2 096221	1.289309		-1.14176
5	-0-2000	0. 255175	199595.1	- 4. 687055	070376-1-
40	-0-17500	0. 823 947	1. 507 655	-4.293335	-1-417059
41	-0.15000	-0.403864	1.335311	-5.191425	-1.108127
42	-0.12500	-1 - 955164	0.457364	-5.272258	-0.415311
6 .4	- 0. 1 00 00	-2.461095	n . 099495	-5.559268	-0 °04 472 5
ا و و	-0-07500	-3 6448542	9.026037	- 6. 40 7356	-0-075440
5 - 7	- 0* 02000	-4-456558	0. 007910	-6.282345	-0 °C0 784 6
4	-0.02500	-7. 665 921	0. CC2 602	-6.293740	-0°00 2011
41	0.0	-13.717616	3-003 RBR	-5.772827	-0 ,00000
80 (1	005200	-19.428878	0. 000305	-3.6581 97	-0.000.15
5 C	00050-0	-20•022426	0* 0001 04	-1.727628	-0° JUUI J
2:	0.610.0	- 13m /1 / 324	9° 00003°	-4.916.709	-7+000039
75	0.1000	-11 200 11-	0,00000	-5.101139	-0°000033
25	0,20000	-116 CH4413	000000	525454911 - 11- 571911 - 11-	400000 °-
2		101012361-		201011011	(m)n(m)n = 0 =
ţ		007 c 7 3 0 7 L	1		100000-0-

りさいいねーと人	1 ~ U U U U U U	とちにないい。	1.00P55 J	ს. იიოლიც	0°008455	5 14800°0	286800.00	0.0004357	0.008337	0.00.8322	9 (FA00.0	0°018298	0.004240	0. 008283	0 000 000 000 000 000 000 000 000 000	1.1/8/m.".			0-000257	0-008255	0.019755	0.008255	0.008253	0.008259	0 00 9259	0°06 260	0.008763	0,008263	0.008273	0.008277	2 87 800 °0	0.008247		0.00.8345	0.00073	0.00 84 09	0.008452	0.008499	0°000150	71140H*0	0.007095	0.007090	0.008002	0.008013	0.00B329	0.008045	9.00A 066	0.000087	0.008239	0,008175	0.008129
γ3 _5 × Ω Υ.	1 - 007775	10-10-0	J. N97426	128200°C	3 807798	l luidu •u	F 50800 °C	0.019249	1.008355	7. 00R557	0°008745	2.00.8733	049600*0	0*004720	140404	2 8 6 6 1 V		C 30 0 0 0	FT 79 00 0	0E 2 600 -C	0.09250	1.00156	9.009198	9.009250	192000°C	0.09232	0.004222	0.004223	9.009152	0.009135	6 606000	0.008062		E9 1600 °C.	9.009038	0• 0091 66	0.009 279	0.009214	101600 .		0.000386	23200 °C	J. 079319	0.00345	176900.0	0.009329	0 E E 600 B U	0° UJ3449	9.010913	0+010140	119600*0
∧ 1- אית∩FL	1° 040045	J. 9A1 40F	9. 342746	591599	n.qR2170	3.982007	7.0 4 42 07 F	0.942065	7. 5 42 0K2	1. 9A2050	1° c 65 06 %	J. 982045	0.982069	0.582071				9.987048	0.982.002	9.982095	7.9R2094	2 • 9 2 0 9 F	0.982099	7. 92093	0.982095	J. 982096	0° 4 P2 0 45	0.982093	7 • 5 82 093	0, 98,209,7		0-982103	0.587116	0-982130	0.582154	J. 982 196	0. 982 261	0.982329	472746 0	676164 40	1.941112	C-041073	0. 581 041	3,931018	n. 5R09R7	J • ar0 955	0.930916	9. CRNB75	9.98058A	0.580706	7 • 980 795
γ ι −Γκρτ .	1° L J L L L L L L L L L L L L L L L L L	0.347166	u lu Zao *u	i E 1 1 00 "O	0. cal 444	0.9490627	0 adl 245	0 • 990.844	0° cau 4 2 5	0- 490227	0. 949 755	0.989617	0.449482	0 999252	674645°C	111.44 °C	0.084816	0.986914	0-986746	0. 586446	7977287	0.987534	0.936546	1877AP.0	0. 986 940	0. 986 172	0. 986493	0.986468	0.985022	0.9944660	20*****	1 = 7 # # 5 5 1 0 = 9 # 6 5 6 6	255 580 U	0.982946	0. 592 414	0.982011	0. 9RV362	0.980426	0 070700	00 078 420	0-977647	0.977216	0.975679	ET E E79.0	0.971775	0 • 9 71 060	U.973247	0. c73 925	0.973119	0. 972.851	0.973375
art.∎VGF	-1-20000	-1.15000	00001-1-	- 1 °0 75 00	-1,05040	-1.025.00	-1-10000	-0.47500	- 0* 250.00	-0* 32200	- 0,000	-0.97500	- C. R5000	-0.92500			-0-72500	-0.7000	-0-67500	-0-65000	-0.42500	- 0. 60000	-0.57500	-0.55000	-0+52500	-0.50000	-0.47500	-0-45000	-0.42500	00000			-0-30000	-0.27500	-0-25000	-0.22500	00000-	-0.17500	000001°0-		-0-07500	-0.05000	-0-02500	0.0	0.02500	0.05000	0.07500	0.10000	C. 25000	n - 20000	0°15040
•CN	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	4	ŝ	9	~	80 1	C	10	11	12	13	4	2 2		- a	61	20	21	22	23	24	25	26	27	2.8	٤;	ç;		2 6	2 2	35	36	37	38	6 G	0	;3	19	4	45	46	47	4 B	49	50	5	23	2	ž
Figure 66. YCOR data listing for 0.1-M phenol in N/10 HClO₄

.

SURFACTANT CONCENTRATION= 0.100-M PHENDL ELECTROCAPILLARY MAXIMUM IS -0.62500 VOLTS VS. S.C.E. FRUMKIN EXPONENT= 1.22000 FLECTRICAL DESORPTION EXPONENT = 15.00000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 10.000000 DIFFUSION TERM= 10000.00 SURFACE VISCOSITY OF PURE INTERFACE= 0.000001 SURFACTANT SURFACE VISCOSITY= 0.000100 1/B0 = FRUMKIN CONCENTRATION CONSTANT= 0.005000

INPUT DATA FOR MODELED BEHAVIOR: MCDIFIED FRUMKIN ISOTHERM

WAVENUMBER = 69.274303 RECIPROCAL CM.

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0009400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 30.50000000 4V. INITIAL DAMPING COEFFICIENT 0.83700 1/CM. WAVELENGTH 0.09070 CM. PROBE SEPARATION = 0.96800 CM.

MEASUREMENTS MADE AT WATER 0.100-M PHENOL N/10 HCL04 / MER CUR Y

INTERFACE

. _

HOLD4/HG INTERFACE-DATA OF G.BIERWAGEN (5-17-67)

ANALYSIS OF INTERFACIAL RIPPLE DATA AT POLARIZED . 100-4 PHENOL IN N/10

، ۲۰	Pril • עייך דקק ב	FRF CUENCY	UJT011 VJLT4CF(4V.)	54 × 45
1	-1-250000	463.597000	51. POP 700	363 . 600113
2	-1* 2 D COCO	4 64. 600000	53.60000	140° 410011
e	-1-150000	4 £ 5. 70 000	5 * 000 JUD	66000000000
	000000	4 6 R. 00000	52.600300	379.440000
n 4			52 - 200000 - 52	141 \$100000 382 000000
	-1-075000	4 7C- 80000	52,500.00	384. 50000
. 62	-1-000000	471.60000	52.50000	345 80000
σ	-0-975000	4 72 . 300000	52 . 700,000	397.0000
10	-0-95000	473 . 100000	52.90000	060006*285
11	-0° 42500	4 72.4 70000	52. 80000	3.89 000019
12	000006 0-	474.100001	52 . 500 0 10	190,000 • 1965
6 1	-0-87500	4 74. 7000 DD	53. 300000	190.8 J0000
14	- 0* 85 COOD	4 74. B00000	53. 500.000	00006.165
15	-0- R 25000	4 74. 900000	52. 000000	391 . 80000
16	0000110 0-	4 74. BUDUND	51.200000	392. 600000
	000511-00-	4 74 900000	51.200000	193.10000
B1	-0° /20000	4 74. 700000	51. 500000	000006 * 66
5 - C	-0* 725000	4 74. 870770	51.300000	194. 000000
12			000001 15	344 CUUUUUU
33			000001-12	1944 50000
22	0,000,000	4 13 LUUUUU	606601 15	000005 205
46		4 19 20000	000001 12	306 \$ 00000
25		4 13e 200000	000001 • 16	
26				30% 50000
77		47.4 BODOO		
28	-0-50000	4 74- 50000	51, 20000	
29	-0-475000	4 74- 40000	51 . 00000	
Ú.	- 0- 45 0000	4 74-0 00000	51 - 000000	303.60000
31	-0-425000	4 73 60000	50°0000	
32	-0-40000	4 73. 1 00000	50.40000	392. 90000
33	-0.375000	472. 70000	50.20000	391.90000
34	-0.350000	4 72. 10000	49. 90000	391. 200000
35	- 0, 325000	471.40000	49.50000	390. 500000
35	-0-30000	4 70° 700000	48.90000	389.500030
37	-0.275000	469. 900000	49.30000	389.90000
38	-0-250000	469.200000	48 . 300000	397 . 6 10000
39	-0*222000	46P. 100000	47 . 1n0000	386. 600000
9	-0* 200000	467. 20000	46. BOD 000	145. 20000
		465. 300000	46* 200100	000006 686
		4634 XUUUU	45, 400,000	000006°146
2				0000001 975
45	-0-075000	461-60000		000001-926
46	- 0, 05000	4 6 C. 1 0 0 0 0	44.000000	374 80000
47	-0.025000	4 5 A. 50000	44-100000	000007 . 57 5
48	0.0	454.80000	42 100000	370 200300
49	0 0 2 5000	454 . 90000	41. BODODO	167.990000
50	0.050000	453+20000	41.10000	365. 40000
51	0.075000	451.40000	41.00000	347. 700090
5.2	0•10000	449,30000	41.000000	159. B00000
53	0+15000	4 4 5° 20 000	33. 100000	353. 600000
54	0° 20000	440° 300000	37.30000	346.500000
Figure 66	(Continued)			

APUT TURK J

1

0 D IJ 5 ירק

ΙΝΙΤΙΑΙ ΕREDUENCY = 41α ΒΟΩΛΟΟ

	CORRECTED DUTPUT VOLTAGE	47 . 13428	41° acobs	42 12054	42.07553	41. 89325	41 ° 845 71	41°77254	41 6 4227	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4 1. 75A 31	40-53691	40. 52441	40 • 246 49	40°27692	40.08408	40°12921	40° 04820	39° R7526	40.34957	38 . 89958	39 ° 03104	38 . 72389	3A . 98054	39 . 36780	34.18902	37 . 0199 <i>6</i>
	FR EQUENCY	4 74. 50000	474.40700	474.00900	4 73. 60000	473 10000	472.70000	4 TZ 10000	4/1.40000 670 70000		469-20000	468.10000	467.20000	466.30900	465.20000	463.90000	462.70700	461.60000	460. 10100	458.50n00	456.80000	454 . 90000	453.20000	451.40700	449.30000	445.20000	440.1000
ECTINN FREQUENCY ** D FREQUENCY ** D FREQUENCY ** 3 FREQUENCY ** 3 FREQUENCY ** 5 FREQUENCY ** 5 FREQUENCY ** 5 FREQUENCY ** 6 FREQUENCY ** 6	AGE ND.	2 H	20	30	16	32		4 U	5 T	01 7 £		39	40	41	42	43	44	6 C	46	47	£ 3	44	50	15	52	53	4 1
FATS rF SwellTUDF (npar C.2.2019209515) 04 C.2.20192094150 04 C.2.2019309451 04 C.2.201742510 04 -0.174251946410 04 -0.174251946410 04 0.17423327500 02 C.439545210 01 -0.376450196420 00 C.43054640-01 -0.37042096680-01 -0.37042096680-01	CORRECTED PUTPUT VOLT	47.02294	46° 68991	45 4 796 A	61106 ° 64	45.10958	44 544003 44 355 54	20101 777 20101 777	44°I 040'	43.9712 F	43.70082	5835°437	ũ 7662°67	11256 854	42 • 66 % 1	4204344	42.01316	42. 32025	4 2. 12555	41.93110	4 1° 40084	41 • F7C66	4 1 ° 8 404 4	41.84044	42.19841	41 . 90089	42.2897R
JHIAL CREFFCT	FRE QUENCY	463.50000	464 60000	465.70000	488 UUUUU	468.90000	404 40000	471-60000	4 72 - 30000	473 10000	473.70000	474.10000	474.70000	474.80000	474.90000	4 74 . 80000	60006*715	474 • 70000	00008 +1 +	474.90000	60060* 41 4	475 . 10000	475.20000	475.20000	475.10000	475.00000	474.80000
א א גען	•UN	، قىم	N	~ ~	tı	6 4	C P	- a	r 0	10	11	12	13	14	15	16	1 1	18	7	0.	17	22	53	24	25	24	72

Figure 66 (Continued)

213

۰.

:

•UN	PPL . VOLTAGE	Gå44å(Expt。)Cålc。F=0	THETA FROW MONEL	ΥΓρμαίεχοτι)	{ אן מאמאק.
(-1.2500	380.52545	n. 0672A3	0.389789	1 •573194
r., r	-1.2000	382.31199	0.178145 0.553,330	£21775.0	J. 5 4 8 5 4 6
• •		2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	616166°0	11 = 4 / 4 / 4 / 4	7,535,44 A C 2 2 5 4
· •	-1.07500	3 40. 33379		0.432594	1.579705
ç	-1.05000	340° 974 R	0. 927 544	0.445705	1.577695
•	-1-02500	3 92.4 5611	0.948321	0 ° 450195	1.5759B7
en (-1-00000	393.77475	0° a62089	0.455982	9 . 574787
•	-0-97500	3 94° 931 14	0* 971 492	0.457150	0.573778
9:	-04-95000	396.25469	0.978073	0.459097	566672°0
1:	00000	11147-2416	691286.0	0.465471	0.572537
22		5 4 14 4 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00 480 14	0.474914	9.571702
		340,014	0 90054 0	0 4403143	n_571341
<u>t</u> <u>r</u>		32010 4660	0+ 4403FU	0.400140	0. 570813
16		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0- 003 031	0 - 50521.2	106015°0
1	-0-77500	97054 995	0 993 A3 A	0-50 61 47	1.568805
18	-0.75000	398. 90024	0 99444 7	0.498633	0.568348
51	-0.72500	399.06525	0* 994 899	0 503397	7=566704
20	-0.70000	399, 23027	0. 995 225	0.508177	0-567766
21	-0.67500	399, 39635	0.995446	0.508921	J-567319
22	-0-65000	399. 56246	0.995573	0.509667	0-567419
23	-0.62500	· 399.72860	0 • 995614	0.510413	0-567304
24	-0.60000	399 . 72860	0.995573	0.510413	0.557415
25	-0,57500	399 , 56451	0. 995446	0.501612	9-567315
26	-0.55000	399°35635	0.995225	0.508921	0-557330
27	-0.52500	399,06626	0*994899	0.499377	9-567027
28	- 0* 5 0000	398 . 56681	0. 994447	0 • 50 Al 83	0.567164
29	-0*47500	3 9 8 S 3 9 9 8 8	0. 993838	0.506483	9.567305
OF I	-0.45000	397.73659	150 666 00	0.503520	0.567356
۲.	-0*42500	397.07283	0.991967	0.504624	9.56741 A
	-0* 40000	396.24312	0• 990560	0*204110	0. 567281
22	-0.5755	395, 580, 9	0. 988 689	0.510282	7.568033
1	-0, 375.00	344.9418.9	0,986179	0-512090	0.568276
		543643040	0.482769	0* 51 531 7	0.568456
		39 2a 21433 300 AFE44	0.478073	0.522459	0-569021
, er		380, 80605	26411590	6/36/24 %U	0.559122
0	-0.27500	1 R7, 006 2 2	1000304 00		
4	-0-2000	386.52758	0,927544	21154500	
41	-0.17500	3 95. 04994	0= 894 499	0.550537	0. 573977
42	-0*15000	383.25633	0. 840 544	0-549756	0-576754
4	-0.12500	381.14051	0 . 741936	0.554611	0.578479
44	- 0. 1 0000	379.19425	0.551679	0.553552	0.574157
¢ •	00520*0-	377.41370	0. 3166Rl	0.555639	0.561315
0 I 4	-0-02000	00266 • 74 €	0.178145	0.560119	n. 55793A
	-0*05200	372.42222	0. 104369	0.547894	0.557794
		364 6H/10	0.062289	0.585702	9. 558568
	00 6 2 0 0	300.0001	0.05750	0.582216	9. 559053
25	0.075.00	20024-2002	0.022217	0.59037B	0.560023
: :		111010105	0.015095	0.543554	7.561139
:6	0-15000	351,36115	0-002552	0°573341	0.5621R2
54	0.200.00	7 1 2 2 2 2 2 2	45 4 300 40 0 - 000 4 3 8	0 407670	
			66 . AAA •A	000000 m	1,6,0c=n

Figure 66 (Continued)

N-1.	POLAVOLTAGE	RF(E)-EXPT.	BELE)-MUDEL	IM(E)-FXPT.	LA(E)-MJUEL
1	-1.75000	10.293 993	J°UU3IJ3	7.743174	-0.01100
2	-1.20000	G. 221 478	040370	4.75341 n	-1.130467
з	-1.15000	7. + 72 4 8 P	0.740 967	5.447910	-0-591505
4	-1.10000	7.239.631	7.842420	5-152622	-7-926393
5	-1.07500	5 . 944 990	9.773974	4.967362	-0.765333
6	-1.05000	7.035968	ĵ∎ 7 26 5 7 7	4. 417330	-2. 721 55 7
т	-1.02500	7.034690	0.694500	4-714926	-0-691409
8	-1.00000	7.097133	0.672688	4 445691	-7. 570444
9	- 0.97500	7.090037	n. 657576	4.612363	-2.656155
10	-0.95000	7.474514	0.647062	4.755902	-0.646031
11	- 0.92500	7. 299 633	7. 639500	4.630957	-0.638727
12	-0.90000	7.209918	0.633952	4. 3688 39	-0-633354
13	-0.87500	7.290784	9.630077	4-671654	-0-629601
14	-0.85000	7.007405	0.626909	4-507461	-0-626521
15	-0.82500	6.950450	0.624572	3.977298	-0-624249
16	-0.80000	6.155166	0.622687	3.195048	-0-677410
17	-0.77500	5.8C0657	0.621355	2.995419	-0-621113
19	-0.75000	5.107493	0.620089	2 8851 75	-0-619974
19	-0.72500	3.068578	0.619441	2. 158 335	-0-619245
20	-0.70000	4.708194	0.618951	7.493337	-0-618769
21	-0.67500	4.247861	2.618606	2, 313197	-0-618433
22	- 0-65000	4.491481	0.618489	2.373504	-0.618327
23	-0-62500	4-450921	0-618428	2.337725	-0.619767
24	-0.60000	4 . 590 701	0.618554	2.397088	-0-618387
25	-0.57500	4 . 289 4 29	0.618671	2-522244	-0-618498
26	-0.55000	4.247861	0.619016	2.313197	-0.618834
27	-0.52500	3. 529749	0.619441	2.378695	-0.619345
28	-0.50000	3.395228	0.619958	2, 242274	-0-619743
29	-0.47500	3. 469575	0.621028	2.144638	-0-620786
30	-0.45000	3.017 393	0-677167	2, 155778	-0.671894
31	-0.42500	2 - 567374	0.623717	2. 042943	-0 673303
32	-0.40000	1. 593357	0.625787	1. 769561	-0.625399
33	-0.37500	2 . 244 51 7	0.628750	1.824879	-0-628274
34	-0.35000	1. 690 520	0-632615	1.407729	-0.637318
35	-0.32500	0.752455	0. 637947	1.512326	-0 637176
36	- 0- 30000	0.419129	0- 645420	1.225013	-0 644393
37	-0.27500	-1-361356	0.655906	0 053007	-11+044343
38	-0.25000	-0-955717	0 470070	1 1 7 9 9 4 0 1	-11-854489
39	-0.22500	-3.342076	0 4 6 2 5 1 0	1.1/0400	-0.668940
40	-0.20000	-3-576866	0 774443	0 6 2 2 6 6	-0.649431
41	- 0-17500	- 36 374004	0 771 933	0.075000	-0.719496
42	*0-15000	-76207227	0.040107	9.375203	-0.763238
43	-0.12500	-6.620024	0 013133	0.000000	-0-823667
44	-0-10000	-04-700-20	0 738507	0.833334	-0.977919
45	-0-07500	-6 797034	0 106965	1.019082	-0.049511
46	-0-05000	-7-862135	0 060175	0.000000	-0.185307
47	-0-02500	-0 173 841	0.010267	1. 23/215	-0.039280
48	0.0	-11 957921	0.003000	3.118465	-0.010287
49	0-02500	-14-763750	0.000000	1.440720	-0.003086
50	0.05000	-14 102 (27	0.000300	4.973254	-0.000995
51	0.07500	-15 999704	0.000323	5.696110	-0.000331
52	C-10000	-15.898704	0.009106	7.117357	-0.000111
53	0-15000	-10 007343	0.000034	10-191552	-0.00037
54	0.10000	-19+007343	9.000095	11.517443	-0•00004
	0.20090	-22.500219	0.000000	14-816816	-1.00000

..

Figure 66 (Continued)

Figure 66 (Continued)

,

9TZ

ANALYSIS OF INTERFACIAL RIPPLE DATA MEASURED USING THE CONSTANT "K" METHOD

DATA FOR PURE C.050-M NA2SO4 MEASURED BY G.BIERWAGEN (10/14/67) 2ND TRY

MEASUREMENTS MADE AT PURE 0.050-M NA2SC4 IN WATER / PURE MERCURY INTERFACE 0.050-M NA2SO4 PURE H2C INTERFACE

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.5340C VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 8.7950000C MV. INITIAL DAMPING COEFFICIENT 0.45830 1/CM. WAVELENGTH 0.08650 CM. PROBE SEPARATICN = 1.25800 CM.

WAVENUMBER = 72.637911 RECIPROCAL CM.

INPUT DATA FOR MOCELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

٠.

~

SURFACTANT CONCENTRATION= 0.050-M NA2SC4 ELECTROCAPILLARY MAXIMUM IS -0.46000 VOLTS VS. S.C.E. FRUMKIN EXFONENT= 1.50000 ELECTRICAL DESORPTION EXPONENT = 25.00000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 0.0 DIFFUSION TERM= 0.0 SURFACE VISCOSITY OF PURE INTERFACE= C.000010 SURFACE VISCOSITY OF PURE INTERFACE= C.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/50 = FRUMKIN CONCENTRATION CONSTANT= 1.000000

Figure 67. YCOR listing for pure .05-M Na_2SO_4

DAT	
[indiv]	

			(Continued)	Figure 67
				2
365.000000	4.215000 2.022350	484,400000	0.175000	, ç, ş,
170. 320000	4 "2 0000	491.300000	c. 15000C	54
375. 200000	4. 62700	446. 100000	0.125000	53
000045-015	4.95800	500-00000	0.10000	52
1.1.1.1164°156	000000 S	502 - 400000 - 502	0-075000	15
000000, 100 CUUV60, 100	5.349000 5.308000	000000 80000	309429-0	5-1 2-1
194. 5R0000	5.84000	511.200000	0.0	84
197.500111	5.94500	513.100000	-0.025000	47
400 49000	5.427900	514.40000	-0-050000	46
1.01.00C*40#	5-759000	515.70000	-0.075000	45
404°470000	000127 4	0000004*615	000001-0-	40
411-460009	4.460000	519.20000	-0.150000	24
413.7n0017	4.125000	51 9. 70000	-0.175000	41
415.760000	6.961000	526+90000	-0* 20000	40
417 640007	4+ 024000	521-60000	-0 -225000	39
419-350000	000001.5	528. 700000	-0.25000	38
00000/2 224	74,477000	530.40000 531 200000		
423.350000		523.400000	-0.325000	55 25
424. 290000	8.535000	531.00000	-0*350000	34
425 050000	4 078000	523. 700000	-0.375000	33
425. 440000	8 008000	1000001-2255		10
426.1 ^A 2009	A. 795000	531.60000	-0.0000	01
426.190000	1.139000	532.300000	-0.475000	29
100000 - 724	8, 179000	531.60000	-0.50000	28
425.240000	8.991000 6.572000	531.100000	-0.536000	07 12
424-620000	7.456000	531. 50000	-0.575000	25
423.85000	8.199000	530-30000	- 0. 60000	24
4 22-950000	8.173000	529. 700000	-0.625000	23
420•760700	10001 1 B. 437000	52 5- 200000	-0.650000	22
419.490000	8.074000	527-800000	-0.100000	02
414.170000	9.170000	52 6. 900000	-0.725000	19
415. 600000	8.145000	525.60000	-0* 750000	18
415.010000	7. 770000	525. 40000	-0.775000	17
000076 115	7 455000	524.00000	000025.0-	16
00064*605	0000200	521.400000	-0.850030	14
40.7.420007	6 °970300	520.20000	-0.875000	[1]
405. 2R0000	6.891000	513.10000	-0.90000	12
	54-281000	516.90000	-0.925000	11
000011*465		515 - 90000		
395.599000 300 170000	6.221000 6.636000	000001 •115	- 1.60000	. 0
000016°255	6.195000	510.30000	-1.025000	~ ,
190.130707	4.476000	508.60C00C	-1-022000	ب ور
しいいつきご * 2 おと	4 ° c 2 2 U U U	507. 79000	- 1. C 7 5000	ŝ
1,70,02, 29,00	5.69200	00001.605	000001-1-	4
COCCE 4 1 15	00.36 ± 2	503.36000	-1.125200	. ~
	5 59000	1 1 1 2 1 1 1 1 1 1 1 2 4 4 4 4 4 4 4 4	0.000.5.1-	- ~
AVVA.7	CUTPUT VELTAGE(#V.) 5 olymood	E 4.F QUE NO Y	P1L • V3L TAGE -1 - 2000-10	• <u>•</u>
	Contract test from the			,

POLYNOVIAL CCEFFICIEATS OF AVALI

CCEFFICIENTS FF 100111JC5 CRRFCTIN 												
CCEFFICIENTS FF AVOLUTUSE CTARFCTIN -CL12755609157 C4 FRECUENCY** 0.43231903455 C4 FRECUENCY** 0.2322190291455 C4 FRECUENCY** -C.1781279456 C4 FRECUENCY** -C.1781279456 C4 FRECUENCY** -C.188127952 C0 FREQUENCY** -C.18856624157 01 FREQUENCY** -0.3546019622 00 FREQUENCY** -0.3546019622 00 FREQUENCY** -0.3764019622 00 FREQUENCY**		0	-	2	~	4	ŝ	ç	~	æ	6	ç
CCEFFICIENTS FF APPLILUE CTW CC123546457 C4 0.21231234455 C4 0.2121231455 C4 C.12046183117 03 C.1806878520 C3 0.2805878520 C3 0.28058624150 01 0.1724315960-01 0.1724315900-01 0.1724315900-01	RECT INV	FRECUFVCY **	ドッドロ レビック イキ シ	FRECUENCY **	F RE QUE NCY **	FREQUENCY##	FREQUENCY **	F REQUENCY##	F RF DI ENCY **	F REQUENCY **	FRECUENCY**	FREQUENCY ##1
CCEFFICIENTS FF APPLITUSE 	E E	5	20	5	5	6	60	22	10	5	10.	-03
	CCEFFICIENTS OF AMPLITUCE	-C. 12355CA9153	0.2421192357	-0-2914356	C. 17832795637	-0-70461831177	C.14908375520	- U. 349735726CN	3 • 4 38 59 6 2 4 1 5 U	-0.15460196920	n. 1724 J37506D-	-0.37042076630-

COPRECTED FUTPUT VELTAGE	7.05151	8.72969	9. 72473	8.04995	4.28180	8. 50558	4-17766	7.43215	4.06068	8 •0 30 50	4 29167	7 14541	4 46 287	4.84366	6. 24674	6.96276	6. 47445	6.56603	6.78977	6. 74677	6.58409	6.50618	6.17542	6 = 254R9	5. 99192	5.98257	5.77543	5.77948	
FREQUENCY	532-30000	531 +60000	532.10000	531.40000	523.70000	531.00000	523 40000	530.4000	521.20000	528.70000	521.60000	526.80000	519.70000	519.20000	518.40000	519.40000	515.70000	514 .40000	513.10000	511.20000	508 .60010	505.80000	502.80000	500.00000	496.90000	493.30000	489.4000	484-60000	
• UN	52	30	16	32	55	34	35	36	37	38	39	40	15	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	
CORRECTED UNTPUT VOLTAGE	6.46413	6.98050	7.05466	6.87317	7.15C62	7.62845	7 • 2074 7	7.15890	7.47763	7.67C94	7.60547	7.54680	7.51241	7.51102	1.70768	7.81026	R.05715	8.43371	8.38040	8.17776	7. 78832	8.51387	8.21862	A.21038	7.40485	8.95385	e. 50156	8.11734	
FRECUENCY	458.10C00	501.30CCC	503.30000	505. TCCCC	507.70000	508.60300	516.3000	511.70000	514.40000	515.90000	516.90000	518.10000	52C.2C0CC	521.40000	522. BCOCC	524.0000	525.40000	525.6000	526.90000	527.80000	529.2C00C	529.20000	529.70000	530.30000	531.50000	531.10000	531.70000	531.60000	
NC.	-	~	~	4	ŝ	9	~	Ð	o	01	11	L2	1	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	

Figure 67 (Continued)

:

:

.01	PUL.VCLTAGE	ΰ АЧЧА (5 YP I ,) САЦ С , F ≈ C	THETA POCK WRAFT	75 PHA (FX071)	(סטי ט) גאד לא
-	-1-7:000	341) 446692	0,*10900	A. 173966	2441040
~ .	-1.15000	345. 44405	0.00000	9.441975	n. 5946.34
- 4		2222787822		0.6633575 0.662703	0.505,500
r 17	-1- (7500	345,45740	1-000-00-0	34 800 J C	
0	-1.05000	397.06165	0.00000	0.571415	
1	-1.02500	399.67952	0.00000	0.616539	0.589211
8	-1-00000	401.84539	0.00000	0 .621915	0.587648
0	-0.97500	406.06587	0.00000	0.547288	0.597543
2:	- C. 95000	408.41936	0.000000	0.567000	0. 596345
= :	(:0476°0-	19595.117	0,007000	0.573913	1.584791
22	-0.9100	20408,114	0.00000	0.55790	0.543566
14		11611-016		000555000	1.583355 2.522250
51	-C. 82500	419.30238	0,000000	0.564202	0 581 5 10 C
19	-0.80000	421-21252		0.552692	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17	-0-17500	423 44565	0.00000	0.527953	0.587483
18	- C. 750CC	423.77752	0,00000	0.491644	0.580069
÷1	-J.72500	425.P5376	0,000000	7 *434694	0.580729
20	-0.10000	427.29028	0.000000	0.516142	0.578274
51	- C. 67500	429.57650	0.00000	0.55497A	0.578249
22	-0.059.0	429.54442	n. 000000	7.494124	0.577011
2	00429*0-	430.34179	0*000000	0.512180	0.574520
5 4 N N		001105 816 4 4 72 15 567	0001:000	1.512978	0.576196
52	00676°0-	10112.664	0.00000	0.545055	0.576548
5 6		132 01101 6 1 51070	u.occ000	0. 444401	0. 57555
2 8 6		4 D J C 300 4 C 300 7 C 6 7	0000000	2 649274	0-575642
; z	-0.47565	20004-004 VUV67 767		160//6 *0	
20	-0.45000	433-41382		776550°0	0 575001
31	-0.42500	434.22119		0.464677	0.575760
22	- C. 40000	433. C7601	0.000000	0.528763	0.575469
	-0.37500	420.49480	0.00000	1 -030486	0.568780
4 E	-0*35000	432 .44152	0*00000	0.484848	0.576407
35	-0.32500	420° C0375	0 •000000	1.050059	0. 570173
36	-0.30000	431.44541	0* 000000	0.59213R	0.577934
37	-0.27500	416.50001	0.000000	1.072635	0.570550
38	-0-25000	428. 7301 7	0*00000	0.530587	0.579201
66	-0.22500	417.16546	0•00000	1.028656	0.574169
; ;	- 6* 20000	425-65117	0.00000	0.673414	0. 5 Pl 954
16	006/1-0-	41401414 19052 512	0.000000	0.997552	0.576354
, ,	-6-12500	10467471		0, 730250	0.578174
14	-0.10000	413.89650		100079 U	4/57/c °n
£5	-0.07500	408 °05744	0.000000	9.707960	0.542625
46	- C. 050CC	406.C312B	0.00000	9.690633	0. 594609
41	-0 • 02 200	404.01330	000000	1045740	0.545981
20 c	0.0	14940.104	0.000000	1. 46904 7	A. 589275
	0.05000	391° CZ 135	0,000900	0.698340	0.5A962E
22	0.07550	10107576	0.00000	2 167 02015 0	0.593704
12	0.10000	383. F3656		1 M 2 P 5 1 % C	94) 265 °D
5	0.12500	379.12985	0.00000	7.743100	0.5458550
45	0.15000	373.71603	0.00000	9.764606	0.507615
5	0-11200	367.88402	000000 °U	0.792617	0*20940
3 6	C. 20000	360.78414	000000	0*1920 60	U. 605797
I	ľ				
5 1 4	ure 6/	(Continued)		•	

NC.	PCL.VCLTAGE	RE(F)-EXPT.	RELEI-MODEL	IM(F)-FXPT.	IM(F)-MCDEL
1	-1.20000	10.010711	2.0	3.607120	-0.031288
2	-1.150CC	6.731439	0.0	1.165375	-2.731499
3	-1.12500	8.361098	0.0	2.833963	-0.131514
4	-1.10000	9.066520	2.0	3.039340	-0.031765
5	-1.07500	8.833502	0- 0	3.474256	-0.031891
6	-1.05000	7.171546	0.0	3-080678	-0.031947
ž	-1.02500	7-565818	0-0	2-271070	-0-032054
8	-1.00000	7-171677	0-0	1.750118	-0.032142
q	-0-97500	8-235052	0.0	3. 421320	-0 032311
10	- 6.95000	7.954080	0.0	3-588506	-0-032406
11	-0.92500	7.357806	0.0	2. 976857	-0.032669
12	- C. 90000	7-095515	3.0	2.610996	-0 012544
13	-0-87500	8,197854	0.0	3.320115	-0.032676
14	-0-85000	8.083878	0.0	3,191046	-0 012751
15	-0.82500	8.059350	0.0	3 600700	-0.032870
16	-0.80000	8.091544	0.0	2 921002	-0.012554
17	-0-77500	8 251049	0.0	A 400843	-0.032003
1.4	- (- 75000	7. 761486	0.0	4.761677	-0.033002
10	-0 72500	9 945915	0.0	5 220220	-0.033013
20	-0.70000	7 687773	0.0	7. 337137	-0.033097
20	-0.67500	8 700443	0.0	4.227001	-0.033153
22	-0.01900	7 311651	0.0	4.219808	-0.033241
22	-0.635000	7.511451	0.0	4.019540	-0.033241
23	-0.82500	7.01120	0.0	4.076342	-0.03273
24	~0.60000	7.401123	0.0	4.092518	-0.033310
27	-0.97500	9.103012	0.0	3+611371	-0.031386
20	- 6.55000	0.845636	0.0	5.135421	-0.033360
21	~0.52500	7.531908	0.0	4.687024	-0.033398
28	-0.50000	7-448938	0.0	3.913088	-0.033392
29	~0.47500	9.484920	0-0	2.923795	-0.033436
30	-0.45000	6-849295	0.0	4.768209	-0.033392
31	-0.42500	1.694130	0.0	5.133044	-0.033423
32	-0.40000	7.567199	0.0	3.842808	-0.033379
33	-0.37500	67.967443	0.0	23.966831	-0.032896
34	-C.35000	7.762430	0.0	4-821227	-0.033354
35	-0.32500	62.978702	0.0	3.241897	-0.032877
36	-0.30000	9.519212	0.0	4.072663	-0.033317
37	-0.27500	58.540938	0.0	18.132421	-0.032739
38	-0.25000	8.964306	0.0	4.828508	-0.033210
39	-0.22500	35.431445	2.0	- 15.868803	-0.032764
40	~C.20000	10.130471	0.0	4-210551	-0.033090
41	-0.17500	26.749443	0.0	-16-25673 R	-0.032644
42	-0.15000	16.758879	0.0	-12.556835	-0.032613
43	-0.12500	5.408085	0-0	-5.192783	-0.032563
44	-0.10000	8.660733	0.0	2.254737	-0.032626
45	-C.07500	6.193185	9.0	-2.724573	-0,032393
46	-0.05000	7.169116	0.0	-0.761853	-0.032311
47	-0.02500	8.075853	0.0	1.285638	-0.032230
48	0.0	8.077729	0.0	1.213379	-0.032110
49	0.02500	7.930752	0.0	0.511704	-0.031947
50	0.05000	7.178744	0.0	-0.556782	-0.031771
51	0.07500	7.324805	0.0	-2.128311	-0.031543
52	0.10000	6.659056	0.0	-2.214078	-0.031407
53	0.12500	7.145949	0.0	-3.246502	-0.031212
54	0.15000	5.942016	0.0	-4.647724	-0.030986
55	0.17500	5.890913	0.0	-6.493238	-0.030741
56	C. 20000	8.173499	9.0	-2.086366	-0.030440

Figure 67 (Continued)

ノラーレック	975800 D	0.008145	0. 708142	1-100 U	ŋ. ŋn81 05	1. 018084	0.078067	0. 10804 9	0.00800.0	0.099022	0.008006	266/06° D	206164.00	0,007958	0.007948	0-007939	0.007935	0.007935	0.007913	106100.0	0.007899	0 007892	0.001688	0.007880	0.007878	0-007876	0.007876	0.007874	0.007877	0.007878	928/00°0	0-0078700	0.007900	0.007882	0.007916	0.007908	0.007938	0.007932	1 #6100°0	0-007986	0.007995	0.008015	0.008038	0.008056	0,000017	121800 0	0.008146	0-078174	0. 708203	0.008238	0 -008304		
Y2-F XP T.	0,00400	0-008734	C.CGR722	0.09008	C. 008575	196100.0	0.008488	0.008562	0.000085	0-007806	100100 0		0 - 0000 so	0-007754	0- 007 609	0.007268	0.006768	0.006838	0.007106	0.007640	0.006665	0.007051		0,006113	0-006681	0.007187	0.008727	0• 006392	0.006397	0. 072 79	0.004181	0-014456	0-008152	0.014767	0.007305	0.014161	0* 008582	EE/EI0.0		0.008866	0.009746	0. 009508	0-009141	112600 *0	0. 000410	0-01010	0-01000	0.010506	0.010526	0-010912	0*01000		
7 1-4UJEL	1.981648	0.990711	177CE9.0	ŋ. 997311	0.983846	7,497897	J. 98097 C	0.983954	1160660	0.991006	0.081062	0, 981083	0.981107	0.981128	0-981147	0.981165	0, 981172	0.981173	0.9912186	0.981226	0.991243	0 981255	0.001360	0.981280	0.981283	0.981288	0.981286	0.981290	0. 981284	0.981283	0. 981 247	0-981298	0.981240	0. 981 276	0.981209	0.981226	0.981167	0.981180	0-98119	0.981074	0.981058	0.981019	0.980975	[\$6086 °0	0060850	200500 00 20080 0	0.980769	0. 980715	0.980660	0.982595	0.980469		
Y1-EXP1.	0.999657	0.989659	0.994562	C. 99607 5	0.996295	0.992450	0.992026	0.570990	C U 466 0	166940.0	076766°0	0-0144	0275920	0.994183	667766 0	0.995604	8*6*66	0.998506	C. 993991	0.996255	0.993539	0.992970	0404040	0-992850	0.993973	0.992946	0.995115	0.992526	0.994838	2015 66° 0	1000010	0.968575	0.997365	0*966109	11166.0	0.975076	211666.0	407116°0	0-983326	0.993364	0.985444	0.987966	0. 991362	515166°U	197066 0	0.986763	0-966141	0.985535	0.983581	n. 98 220 l	0.987375		(Continuea)
FCL.VCLTAGE	-1.20000	-1.15000	-1.12500	-1.10000	-1.07500	-1.05000	-1.02503	00000.1-		00056.0-		-0.87500	- C_ 85000	-0.82500	-0.80000	-0-17500	-0.75000	-0.72500	- C. 70000	-0.67500	-0.65000	-0.40000	-0.57500	-0.55000	-0.52500	-0.50000	-0.47500	-0-45000	-0-42500		-0.35000	-0.32500	- C. 30000	-0.27500	-0.25000	-0.22500	00007°0-	-6-15000	-0.12500	-0.10000	-0.07500	-0.05000	-0.02500	0.0	0.05000	0-07500	C. 10000	0.12500	0.15000	0.17500	0.20000	Ľ	Jure 67
۲C.	-	~	~	4	Ś	.0	~ '	no c	, c	2:	:2	12	41	2	16	17	18	19	20	21	22	55	5	5 28	27	28	29	õ.	5:	7 6		35	36	37	98	5	2	19	1.0	44	45	46	14		5	51	52	53	4	55	56	ļ	н н

Figure 68. YCOR data listing for 10^{-6} -M NaDS in .05-M Na₂SO₄

SURFACTANT CONCENTRATION= 0.000001-M NACS ELECTROCAPILLARY MAXIMUM IS -0.4750C VOLTS VS. S.C.E. FRUMKIN EXECNENT= 1.50000 ELECTRICAL DESORPTION EXPONENT = 12.5000 MAXINUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY OF PURE INTERFACE= C.OCCOLO SURFACTANT SURFACE VISCESITY= 0.000500 1/BC = FRUMKIN CONCENTRATION CONSTANT= 0.000250

INPUT CATA FOR MODELED BEHAVICR: MODIFIED FRUMK IN ISOTHERM

IN M/20 NA2504---CATA OF G.P.BIERWAGEN(3-19-68) TRY#2

/

WAVENUMBER = 53.383CC2 RECIPROCAL CM.

PROBE SEPARATION = 1.72800 CM.

WAVELENGTH 0.11770 CM.

0.00001-M NAES

INITIAL DAMPING COEFFICIENT 0.57782 1/CM.

MEASUREMENTS MADE AT M/10##6 NADS IN M/20 NA2SC4

IN 0.050-M NA2S04

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13,53400

VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700

ORIGINAL OUTPUT VOLTAGE 4.8790CC00 MV.

N N 6.3

INTERFACE

.

ANALYSIS OF INTERFACTAL RIPPLE DATA MEASURED AT THE POLARIZED 10**(-+) M MADS

PURE MERCURY

•

•

	V.) GAVAD	344-50000	352. 200001	360,000	344.59090	372. 10000	3 78. 500000	389.452300	002020-205	102 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	007989 -995	403.338800	40.6. 4.88000	404 30B600	215°049800	414°43/100	01 140 ° 41 F	420-004100	421.378100	422-536800	423. 49R000	424.278300	424- 892300	425.352500	425.659900	109150 - 254 255 - 902800	425-876400	425.622800	425 . 29 1700	424-829100	424. 233600	423-500700	422 62 (41)	420.452800	419-150900	417.708400	416.130800	414.424500	412, 398660	40 E 6 3 8 4 0 0	406.529700	404*354000	402-125000	347 - 65 Z TUU 307 E L L L D	395 202100	307-81660	390. 360300	387.804900	385.116600	382.201400	376 368 000	009966 9028	
	PUTPUT VPLTAGF(M	13.323000	13.039000	12.541000	12.441 000	12.547000	000162121	12.457000	11 - 705000	11.365000	11-274000	12.043000	11.927000	10-762000	9. 770000		6- 606000	5.251000	4.313000	4.560000	4**4 R0000	4.594000	4.685000	4 .410000	4.1 FOUUU	2001 tt "t	4- 699000	4-R79000	000200°5	5.278000	5 - 299000	000102°4	5 12000	6. 532000	6.485000	6.759000	7.147000	1-141000		8.147000	8.674000	8. 638000	8.688000		000920-01	10.181000	10. 039000	10.653000	10.791000	10.695000	0000011	11-445000	
INPUJE DAFA	FREDUENCY	39.2. 20000	304.70000	397.30000	304. 400000	311.400000	315,100000	316.60000	318+ 30000	319.50000	329.80000	321. 30000	322-20000	32 3. 4000 00	000004°475	32 6- 40000	326.60000	326.80000	32 6+ 400000	327.40000	327.300000	327.60000	330.90000	331. 600000 321 000000		332.300000	332.50000	332,300000	332.60000	332.100000	332.000000	121 70000	331-100000	331.100000	330.30000	329.900000	329-30000		327-300000	326.60000	325. 600000	324.700000	000006-526	322.30000	324.20000	32C- 60000	320.100000	31 5. 20000	318.60000	000001°212	316_800000	316.500000	
	PUL. VOL TAGE	0.225000	0 • 2 00000	0.175000	0.150000	0*125000	0.075000	0. 050000	0.025000	0"0	-0.025000	-0*02000	-0*012000	- 0*10000	-0-15000	-0.175000	-0 +20000	-0*225000	- 0.250000	-0.275000	-0* 30000	-0.325000		000007 0-	-0-425000	-0-450000	-0.475000	-0* 50000	-0.525000	-0222300		~0_625000	-0.650000	-0.675000	-0* 70000	-0- 725000	-0-125006		-0.825000	-0.850000	-0-875000	000006-0-	-0-95000C	-0.975000	-1- 00000	-1.025000	-1.050000	-1.675000	-1.100000	-1-15000C	-1-175000	-1-20000	
	. OK	1	\$	•	4	Γ.	• •	8	6	10	==	12	[]	* .	16	21	14	61	20	21	22	53	17 24	C 2 2	27	28	29	30	16		46	56	36	37	38	39	0.4	24	.4	44	45		48	55	50	51	52	53	4 C	56	51	58	

Figure 68, (Continued)

INITIAL FREQUENCY = 332.30000

PCLYNCHIAL	CCEFFICIENTS OF AMPLITUCE	CCRRECT ION
	C. 383C48CC5CD	C5 FREQUENCY ++ 0
	-0.9174423636D	C5 FREQLENCY## 1
	C. 9407638208D	05 FREQUENCY ++ 2
	-0.53537717780	C5 FREQUENCY## 3
	0.1826156901D	05 FREQUENCY** 4
	-0.3733478368D	04 FREQUENCY ## 5
	0.42366536690	C3 FREQUENCY## 6
	-0.20576723560	02 FREQUENCY ## 7
	0.0	FREQUENCY + B
	0.0	FREQUENCY # 9
	0.0	FREQUENCY ##10

NL.	PRESUENCE	LUKKELIED CUIPUI VULIAGE	NU.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	302.20000	7.03561	30	332.30000	4.87900
2	304.70000	7.16365	31	332.60000	5.43733
з	367.30000	7.22393	32	332.10000	5.07752
4	309.40000	7.41807	33	332.00000	5-00660
5	311.40000	7.74727	34	331.60000	4.69599
6	313.30000	7.76614	35	331.7000C	4-65201
7	315.1COCC	7.55145	36	331.10000	4.90272
8	316.60000	8.12271	37	331.10000	5.41688
s	318.3CCCC	7.68231	38	330.30000	4.96367
10	319.5COCC	7.46396	39	329.90000	5-01559
11	320.80000	7.38712	40	329.30000	5-10782
12	321.3COCC	7.87938	41	328.50000	5. 36621
13	322.20000	7.77988	42	327.90000	5.32783
14	323.40000	6.99439	43	327.30000	5. 25744
15	324.90000	6.32179	44	326.60000	5.35661
16	325.40000	6.03722	45	325.60000	5-64958
17	326.40000	4.26496	46	324.70000	5.60857
18	326.60000	4.34341	47	324 .20000	5 . 6 398 4
19	326.80000	3.46245	48	323.30000	6.09638
20	326.4CCCC	2.82866	49	322.3000C	6.06945
21	327.4CCCC	3.04038	50	321.20000	6 . 560 46
22	327.30000	2.98068	51	320.60000	6.67439
23	327.6CCCC	3.07726	52	320.10000	6.58825
24	330.90000	3.79814	53	319.20000	6.99720
25	331.60000	3.90668	54	318.60000	7-08562
2 E	331.90000	4.06395	55	318.10000	7-01651
27	332.00000	4.20162	56	317.10000	7.47008
28	332.30000	4.57600	57	316.80000	7.47188
29	332.5CCCC	4.90375	58	316.50000	7.45836

Figure 68 (Continued)

			(Continued)	igure 68	Ч
0.405858	0.332221	6 0 00 00° 0	06106 *000		,
0.402792	0.331173	0.000005	389 . 65834 700 03100	-1.17500	57 5.4
U. 348852 0.400266	0.331317	0.000014	350.38517	-1.15000	56
0.397230	0.361890 0.367562	0.000021	342 460284	-1.12500	
0. 395882	0.369157	0.000044	355.48162	-1.5000	5 C
0.394976	0.404008	0.000064	397.66853	-1. C5000	.22
U. 342000	063966"0	160000*0	358-85557	-1.02500	15
0.392170	0.451473	C. UUCI /6	460.36368	-1.0000	20
0.391595	0.448911	0.000239	403 - 51766 403 04051	-0.97500	0 0 F 4
0. 390944	0.493957	0.00C318	407 - 72190	-C. 525CO	5
U. 389211 0.389911	711265°D	0* 000419	408.95983	00006 - 0-	46
0.388913	0.523774	U.UUU691	1685 (°115	-C.875CC	- 47
0.388241	0.534588	0-000866	415.41467 /13.41467	-0.82500	n 4 4 4
0. 387537	0.526892	0.001070	416.52126	- C. BCCCO	; ;
0.386575	147166°0	0.001302	418-42839	-0.11500	4
0. 386125	0.561842	0.001838	4610426431	-0.15000	5
0.385567	0.567864	0. 002134	422.92921	-6.70000	8
0.385509	0.517299	0.002438	424.98326	-0.61500	22
0.384678	0.605390	0-003038	424,94537	-C. 65CCO	9 E
0.384006	0*599945	0.003313	426.19279	-C.60C0C	4 . F
0.381619 702020	0,47470	951500°0	427 .23346	-0.57500	53
0.383837	0.515119	0.003908	428° 78771	-0.45000	10
0.383323	0.577820	0.004061	427.98417	-6.50000	е,
0.383138	0.614924 0.574801	100400-0	428°49413	-0.41500	36
0.382871	0.664319	0. 003908	427.15432 237.05530	-0-42500	21
0.382790	U. (U6438 0.683599	0.003756	426.88368	- C+ 40000	56
0.382368	0.722743	0.003313	4 2 4 ° 3 1 C U 3 4 2 4 ° 1 N 3 4 R	-6.37500	52
0.379482	0 - 844546	0.003038	415.8898C	-C.325CC	23
0.179683	0.862998	0.002742	415.11819	-0.30000	22
0.380154	0.893293	0 - 00 24 34	1512214	-6.27500	212
0.381456	0.776294	0.001838	413.96571	-0.22500	<u>e</u> :
0.46585 0	0.645111	0*001559	413.58730	- C - 2000	18
0.383736	0 454554	0.001070	410-72036 413-07986	-C-175CC	27
0. 384831	0.427900	0.000866	408°48999	-C. 125CC	15
0.385846	0.307796	0.00042	405.779598	-C. 10000	11
0. 387088	0.300442	0.000419	4CC. 64CI5	- C. C5CCC	22
0.388905	0.337775	0.000318	399.40432	-0.02500	11
0.391267	0.315100 0.331786	0.000739	356,22456	-0.0	. 5
0.391976	0.282841	0. 00C127	389.18420	00040.0	1 0 0
776996.0	0.325042	160000-0	385.55382	C.C75CC	~
0.399473	122016.0	0- 000044	381-23373	C. 1000C	- 0
0. 401582	0.335356	0.000030	371.94435	C.15CCC	. .
0.407465	0. 350702	0.000021	366.93966	0.17500	- ·
C.411688	0.365999 2 365699	0,0000000000000000000000000000000000000	240,522,015 240,525,525	22000 -23000	•~
AL PHAIMUCFL	ALPHA (FX PTL)	THEIA FRCY MODEL	GAMMA1EXPT。)CALC。E=0 364 :0:46	FLL.VCLTACE C 33567	۔ در

226

•

٧C •	P (L . V CL T AGE	RELE)-EXPT.	RE(E)-MODEL	IP(E)-EXPT.	IM(E)-MCDEL
1	C. 225CC	7.447820	-0.000104	4.272338	-0.000891
2	C.2CCCC	6.025104	-0.001184	3.484890	-0.001383
3	0.17500	4.366969	-0.0C1675	2.860765	-0.002103
4	C.150CO	2.107692	-0.002244	2.900093	-0.003114
5	J.12500	0.926657	-0.002819	3.830145	-0.004470
6	C.10000	-2.650714	-0.003275	5.300587	-0.006174
7	0.07500	-5.567637	-0.003467	6.596795	-0.0CR150
8	0.05000	-5.467562	-0.003266	12.123165	-0.010240
9	0.02500	-7.010221	-0.002625	9.927379	-0.012289
10	-C.C	-8.830081	-0.001556	11.578118	-0.014119
11	-0.02500	-9.587862	-0.000126	12.603236	-0.015679
12	-C.C5000	-5.495356	0.001653	18.704850	-0.016916
13	-C.C7500	-4.332687	0.003726	21.013273	-0.017916
14	-C.10000	-7.443202	0.006111	24.635093	-0.018722
15	-C.125CO	-17.435563	0.008811	26.821489	-0.019381
16	-0.15000	-11.422366	0.011853	35.682207	-0.019854
17	-0.17500	44-167418	0.015228	52,141967	-0-020261
18	-C.2000C	27.477625	0.018908	45-628495	-0-020566
19	-0.22500	28.396736	0.022873	27.454323	-0-020778
20	-C.25000	23-173980	0.027041	21.797296	-0.020931
21	-C.275CC	25-642421	0.031314	23.207070	-0 021135
22	-0.30000	23.552051	0-035578	22.863200	-0.021267
23	-C.325CC	23.539381	0.039718	23-562967	-0.021247
24	-0.35000	52.866712	0.043567	0.099427	-0.021505
25	-0.37500	42-635503	0-046962	-12, 318681	-0.021740
26	-C.40000	37.613093	0-049783	-18-327072	-0.021915
27	-0.42500	34,977136	0.051910	-23,285897	-0.021864
28	-C. 45CCG	18.475898	0-053222	-26-169943	-0.021894
29	-6.47500	8-732003	0.053664	-20-868486	-0 021013
30	-0-50000	8 8 2 20 36	0-053222	-23.768702	-0.021994
31	-C-52500	2.596954	0.051910	-11-649073	-0.021892
32	-0.55000	4.769380	0.049783	-19-667513	-0.021832
33	-0.57500	7.097996	0-046962	- 17, 741 864	-0 021773
34	-C.60C00	13.554528	0.043568	-20.824243	-0.021696
35	-0-62500	13.665150	0.039722	-13-345517	-0.021680
36	-0.65000	9-366326	0.035581	-15-93894	-0.021013
37	-0-67500	5-514183	0.031316		-0.021778
38	-0-70000	8.833062	0.027043	-13 157011	-0.021360
39	-0.7250C	8-676586	0.022976	-10 800 227	-0.021188
40	-C.75000	7-685900	0.018908	-10.077227	-0.020964
41	-0.77500	4.439178	0.015728	-0 924002	-0.020708
42	-C-80000	5.499945	0 011951	- 9.034793	-0.020388
43	-9-82500	A_856748	0-009808	-7 770401	-0.020002
44	-0-85000	6-546868	0.006106	-6 454514	-0.019521
45	-C.875C0	3-916803	0.003715	- 0, 770710	
46	-0-90000	3,039550	0.001438		-0.018109
47	-C. \$2500	5 765022		-0,109103	-0.017103
48	-0-95000	6 107410	-0.00148	-3.823403	-0.015859
49	-0-97500	3,935511		-1.657600	-0.014309
50	-1.0000	2-167101	-0.002000	-0 334036	-0.012473
51	-1-02500	3 735610	-0.003540	-0.334037	-0.010427
52	-1.05000	5.60210	-0.003345	Up 147307	-0.008337
53	-1.07500	5 512940	-0.003013	1.991090	-0.006359
54	-1.10000	2.213043	-0.002913	2.591621	-9.004630
55	-1.12500	7 84000	-0.002336	3.414990	-0.003249
56		1.880348	-0.001758	4.194640	-0.002213
57	-1.17600	1.9/11/2	-0.001254	5.002151	-0.001467
58	-1.2000	7.10499j 10.047402	~u.uuue61	6.054044	~0.000956
20	-1+25500	10.001442	-0.000572	7.059225	-0.000611

Figure 68 (Continued)

Y2-MCDEL	0.007635	0.007581	0-007529	0.007487	0.007453	0.007412	0.007379	0-007346	0.007329	0.007309	0.007290	0.007269	0.007251	0.007237	0.007225	0.007211	202100 0	061200 0	0.001180	0/1/00-0	0.007166	0,001160	0°1700 0	191/00-0		501.000°0		0.007168	0-007168	0-007172	0-007172	0.007176	0.007179	0.007185	0.007189	0.007197	0-007202	0.007210	0.007218	0.007225	0 +00 1235	942100 0	962/00*0	22200°0	05200-0	0-007302	0-007314	0.007325	0.007339	0.007354	0.007369	0.007385	0-007405	0.007425	0-007452	0.007484	
Y2-EXP1.	0.006856	0-006660	0.006570	0.006282	0.005811	0.005785	0.006089	0.005298	0.005903	0.006215	0.006327	0.005628	0. 005766	0.006920	0-008016	0*008212	292210*0	0.012085	745410.0	0.016/34	166510.0	0*010100	178510.0		0.012806		011110	0-010769	0-010824	0.004649	0.010392	0.010544	0.011238	0.011340	. 0.010771	0.009690	0.010638	0.010525	Q. 010327	261600 0	0.09870	• 10010 • 0	21940000	0. FORM 3	0.009253	0-008409	0.008457	0.007614	0.007427	0.007568	0.006915	0.006779	0.006885	0.006206	0-006204	0 -006223	
Y 1-HODEL	0.981798	0-981903	0.982002	0.982085	0-982150	0.982231	0. 982296	0.982363	0.982398	0.982439	0.982478	0.982522	0.982559	0.962591	0.982616	0.982646	607070	0.982695	0.982/19		0.942/54	21120400	0. 992 / 03	0, 262746	0-742100	0.982775	0.982776	0.962772	0.982770	0.982762	0.982759	0.982749	0- 98274C	0.982724	0.982712	0.982693	0.982679	0.982660	0-982640	0.442621	046784 m	6 16796 O		0.982504	0-982476	0.982451	0.982426	0.982402	0.982373	0.982343	0.982314	0.982281	0.982242	0. 982 203	0.982150	0.982087	
Y I-EXPT.	0-595645	0.993752	0.989165	2 * 6 * 8 * 0	0.982971	0-977915	0.975016	0.970541	0.972261	0. 576834	0.970211	0.965156	0-963052	1465341	0.966042	144696*0		0.961365		0.0555540	413064°N		1000000	101116°0	0.975861	100470	0.477479	0.979032	0.978323	0. 980853	0.978971	0.979755	0.979087	0.981702	C. 980509	0.983212	0.981506	0.982512	0.982652	0161960		110504*0	1 36796 0	0.983216	0.985624	0.985725	0,985328	0.984415	0.986697	0.989810	0.990736	106666.0	0.998347	A. 000545	L •008444	1.018184	
FCL.VCLTAGE	C.225CC	0 - 20000	C. 175C0	C. 150CC	U.12500	C. 166CG	0.07500	0-05000	C. C2500	0.0-	-0-05200	- C* 05 C 0 0	-0-07500	-C+10000		00061-3-	nnes Ten-	-0.2000		-1. 27600						-0-42500		-0-47500	-0- 50000	-0.52500	-0.55000	-6-57500	-0.60000	-0-62500	- C. 65000	-0.67500	-0.70000	-0-12500	00051 • 0-	00000 000000				00000	-0-92500	-0.95000	-C. 97500	-1.0000	-1.02500	-1.05000	-1.07500	-1.10000	-1-12500	-1-15000	-1.17500	- 1.20000	
NC.	7	•	, m	*	ŝ	Ð	~	80	ሆ	2	=	2	2	* :	23	<u>e</u> :		2 C	7	3 2	1	22	32	- H V C	32	27	28	12	ŝ	١e	32	6	đ,	9	9 i 19	17	36	e :	.	;;	23	24	r 4	40.4	1.4	4	49	ŝ	15	52	53	4	55	56	57	58	

Figure 68 (Continued)

ANALYSIS OF INTERFACIAL RIPPLE DATA MEASURED AT THE POLAPIZED 10000 (-5) & NAOS

IN M/20 NA2504---DATA OF 5.P.BIERWAGEN(3-22-68) TRY#1

MEASUREMENTS MADE AT	H/10**5 NADS IN H/20 NA2S04	/	PURE MFRCURY	INTERFACE
C.OCOGIO-M NADS	IN 0.050-M NA2SC4			

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 DRIGINAL DUTPUT VOLTAGE 10.44400000 MV.

INITIAL DAMPING CCEFFICIENT 0.56110 1/CM.

WAVELENGTH C.12820 CM.

PROBE SEPARATION = 2.10100 CM.

HAVENUMBER = 49.010759 RECIPROCAL CM.

INPUT DATA FOR MODFLED BEHAVIOR: MODIFLED FRUMKIN ISOTHERM

SURFACTANT CONCENTRATION= 0.000010-M NADS ELECTROCAPILLARY MAXIMUM IS -0.45000 VOLTS VS. S.C.E. FRUMKIN EXPONENT= 1.5000C ELECTRICAL DESCRPTION EXPONENT = 12.59000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.CO SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/00 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

Figure 69. Data listing from YCOR for 10^{-5} -M NaDS in .05-M Na₂SO₄

Figure 69 (Continued)

50 51 52 52 53 53 54 54 54 55 56 56 57 57 57 57 57 57 57 57 57 57	NG. PDI. VOL TAGE 2 0.20000 3 0.155000 4 0.025000 4 0.025000 10 0.025000 11 0.025000 12 0.015000 14 0.025000 15 0.015000 16 0.025000 17 0.025000 18 0.025000 19 0.025000 11 0.025000 12 0.0150000 14 0.025000 15 0.0150000 16 0.025000 17 0.025000 18 0.025000 19 0.025000 10 0.025000 11 0.025000 12 0.015000 13 0.025000 14 0.025000 15 0.015000 16 0.025000 17 0.025000 18 0.025000 19 0.025000 10 0.025000 11 0.025000 12 0.025000 13 0.025000 14 0.025000 15 0.025000 16
281.90000 281.90000 280.60000 279.800000 279.200000 277.400000 277.400000 277.400000 277.600000	2647. 700000 271. 500000 271. 500000 277. 100000 284. 100000 284. 100000 284. 100000 284. 100000 284. 100000 284. 100000 284. 100000 284. 100000 284. 100000 293. 400000 293. 4000000 293. 4000000000000000000000000000000000000
12.747000 12.129000 11.410000 11.747000 11.528000 11.754000 12.048000 12.1486000 12.135000	CUTPUT VCLTAGE(HV.) 114.961000 113.912000 113.912000 112.123000 112.123000 112.4260000 112.4260000 112.4260000 112.4260000 112.450000 112.450000 112.450000 113.379000 8.363000 9.464000 110.424000 111.4270000 111.42700000 111.42700000 111.42700000 111.427000000000000000000000000000000000000
389,80900 389,80900 389,967500 383,968200 383,859100 374,387800 371,01569 371,01569 367,574200	GAWA 361.303703 371.000 375.700 375.700 384.35400 384.35400 405.207700 413.82.303100 413.100 405.207700 414.401600 415.401600 416.401600 416.401600 416.401600 416.401600 416.401600 416.401600 421.31500 422.313200 422.313200 422.313200 422.313200 422.4799800 423.85000 422.4799800 423.850000 423.85000 423.85000 423.85000 423.85000 423.85000 423.850000 423.850000 423.850000 423.850000 423.850000 423.850000 423.850000 423.850000 423.850000 423.8500000 423.8500000 423.8500000 423.85000000 423.85000000000000000000000000000000000000

INITIAL FREQUENCY = 293.40000

POLYNOMIAL	COEFFICIENTS OF AMPLITUDE	CORRECTION
	0.38304800500	C5 FREQUENCY## 0
	-0.91744236350	05 FREQUENCY ## 1
	C. \$4076382C80	05 FREQUENCY## 2
	-0.53537717750	C5 FREQUENCY** 3
	0.18261569010	05 FREQUENCY ** 4
	-0.37334783680	C4 FREQUENCY** 5
	0.42360536090	03 FREQUENCY** 6
	-0.2057672356D	00 FREQUENCY ## 7
	0.0	FREQUENCY## 8
	0.0	FREQUENCY ** 9
	0.0	FREQUENCY ##10

NO.	FREQUENCY	CORRECTED OUTPUT VOLTAGE	NQ •	FREQUENCY	COPRECITED OUTPUT VOLITAGE
ı	267.70000	28.42121	30	2 93 .2 0000	10.92201
2	271.80000	23.75096	31	293.10000	11.13244
3	273,50000	22.18212	32	292.80000	11.58888
4	275.30000	19.84827	33	292.50000	11.82356
5	277.30000	17.99624	34	292.30000	11.60516
6	279.10000	17.06457	35	291.80000	12.41732
7	280.70000	16.93773	36	291.50000	12.79380
8	282.40000	15.95190	37	290.90000	13.01683
9	283.30000	15.40501	39	290.30000	13.60381
10	284.10000	16.00726	39	289.80000	13.88234
11	284.90000	15.58961	40	289.20000	13.90269
12	285.7000C	14.77945	41	288.70000	13.71942
13	286.40000	12.59589	42	287.80000	14.51238
14	286.90000	10.56435	43	287.10000	14.64664
15	287.10000	8.26857	44	286.40000	14.79013
16	287.10000	6.80996	45	285.70000	14.79872
17	287.30000	7.40355	46	284.90000	15.27880
18	290.50000	7.89962	47	284.30000	15.32392
19	291.10000	7.79692	48	283.40000	15.41671
20	291.70000	8.16132	49	282.60000	15.51028
21	292.10000	8.45786	50	281.90000	16.20261
22	2 52. 60000	8.52438	51	281.00000	16.40973
23	292.90000	8.44928	52	280.60000	16.13827
24	293.20000	8.89033	53	279.80000	16.37622
25	293.30000	9.24102	54	279.20000	16.31424
26	293.40000	9.66800	55	278-10000	17.10013
27	293.50000	9.92729	56	277.40000	17.83982
28	293.40000	10.44400	57	276.60000	17.91102
29	293.40000	10.26700	58	276.00000	18.61645

.

.

.

.

Figure 69 (Continued)

.

.

PUL. VII.146 CAWALISAT. J.C.L.E-0 HETA FRM. MDEL 0.100000 311.0000 311.0000 311.0000 0.100000 311.0000 311.0000 311.0000 0.100000 311.0000 311.0000 0.000442 0.100000 311.0000 311.0000 0.001174 0.000000 311.0000 0.001219 0.001442 0.000000 311.0000 0.001417 0.001442 0.000000 311.0010 0.001417 0.001417 0.000417 0.001417 0.001417 0.001417 0.000417 0.001417 0.001417 0.001417 0.000417 0.001411 0.001411 0.001411 0.001417 0.001411 0.001411 0.001411 0.001417 0.001411 0.001411 0.001411 0.001417 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.001411 0.00141	I DHY (EXDIT) ¥ UHY (ALUE	J.044699 D.354947	0.169A50 D.155A70	9-292576 0.354554	0.755489 0.755489	0.307111 0.352986	0.327413 0.352301	0.330964 0.351416	0.359505 0.359773	0.376109 0.349474	0.357856 0.348304	0.370440 0.347370	0.395841 0.346658	0.471932 0.346043	0.555647 0.345398	0.677269 0.344595	0.164642 0.343720			10245 m 10255 0 10256 m 10256 0 10256	0.661495 0.345018	0.657767 0.346059	0.661979 0.346056	0.637760 0.346111	0.619346 0.346019	0.597847 0.345984	0.585250 0.346011	0-5501100 0.55035 0.550735 0 36606 1	0.539799 0.345896	0.530717 0.346018	0.511591 0.346024	0.502049 0.346122		0.464511 0.346854	0.456285 0.346995	0.435292 0.347213	0.425645 0.347611		0.404520 0.348688	0.400137 0.349144	0.395497 0.349663	0.345220 0.350264	0.380025 0.350832	0.375748 0.351588	0.272868 0.353165	n.352083 0.354190	9.346037 0.355139	0.353977 0.356698	0.347010 0.357925 0 340015 0 350225	0.376623 0.329473	0.306266 0.306266	0.304371	
PUL. VIL TAGE GAMMALEXPT. 1.CALC.E=0 0.15000 311.600 0.15000 311.600 0.15000 311.600 0.15000 311.600 0.15000 311.600 0.15000 316.5049 0.00500 316.5049 0.01500 316.5049 0.01500 316.5049 0.01500 316.5049 0.01500 316.5049 0.01500 316.5049 0.01500 316.5049 0.017500 401.5164 0.025500 401.5112 0.025500 401.53514 0.01500 401.53514 0.01500 401.53514 0.01500 401.57594 0.01500 411.7759 0.025500 411.7759 0.025500 411.7559 0.025500 411.7559 0.025500 411.7559 0.025500 411.7559 0.025500 411.7559 0.025500 421.789 0.025500 421.789 </td <td>THETA FROM MODEL</td> <td>0.000204</td> <td>0.000445</td> <td>0.000642</td> <td>£ 16000°0</td> <td>0.001279</td> <td>0.001764</td> <td>0+ 002395</td> <td>0.003203</td> <td>0.004219</td> <td>0. 005473</td> <td>0.006994</td> <td>0.009804</td> <td>/ 16010*0</td> <td>0.013336</td> <td>0. 01604 7</td> <td>D20610*0</td> <td>0-025503</td> <td>0.078888</td> <td>0-032184</td> <td>0.035286</td> <td>0.038063</td> <td>0.040387</td> <td>0.042139</td> <td>0.043231</td> <td>0.043602</td> <td>162640.0</td> <td>0,040787</td> <td>0.038063</td> <td>0.035286</td> <td>0.032184</td> <td>0.028888 0.026624</td> <td>0.022203</td> <td>0.019020</td> <td>0.016047</td> <td>0.013336</td> <td></td> <td>*66900 D</td> <td>0.005473</td> <td>0.004219</td> <td>0.003203</td> <td>0, 002395</td> <td>401100 0</td> <td>0, 00013</td> <td>0.000642</td> <td>0-000445</td> <td>0+000303</td> <td>0.000204</td> <td>0+00087</td> <td>0-00056</td> <td>0,00035</td> <td>0.000022</td> <td></td>	THETA FROM MODEL	0.000204	0.000445	0.000642	£ 16000°0	0.001279	0.001764	0+ 002395	0.003203	0.004219	0. 005473	0.006994	0.009804	/ 16010*0	0.013336	0. 01604 7	D20610*0	0-025503	0.078888	0-032184	0.035286	0.038063	0.040387	0.042139	0.043231	0.043602	162640.0	0,040787	0.038063	0.035286	0.032184	0.028888 0.026624	0.022203	0.019020	0.016047	0.013336		*66900 D	0.005473	0.004219	0.003203	0, 002395	401100 0	0, 00013	0.000642	0-000445	0+000303	0.000204	0+00087	0-00056	0,00035	0.000022	
PUL. VII. TAGE 0. 10000 0. 125000 0. 125000 0. 125000 0. 125000 0. 075000 0. 075000 0. 075000 0. 075000 0. 075000 0. 075000 0. 075000 0. 125000 0. 1250000 0. 1250000 0. 1250000 0. 125000000000000000000000000000000000000	GAMMAIEXPT.)CALC.E=0	Jen. e / 9 34	371.60989	376.18668	381.05237	386.50549	391.44316	395.86432	400.58005	403.C8667	40, 33514	21/12-104		4 1 1 • 7 5 3 B	4/10/24 4/3 54535	20039014 VIJ VEDBV	41 4 - 074 AK	423.22449	424.94362	426. 69276	427.86304	429.30914	430.17110	431.06385	431.37168	20100 167	010 010 1 Ct	431.70786	431.15395	430.87198	430.01947	4242 15009 678-57636	427.15814	426.30399	424 \$ 58467	422.87629 421 46023	4 19 . 73505	418.30624	415.75955	413.77536	411.79599	404°81924	402°53763	403.36659	401.13245	3995. I 3996	396 . 69102	345*57898 202 2 2 2 2 2	373, 3051 C 391 271146	388.69227	386.77825	384 •59031	141 0515
	POL. VOLTAGE	0.0000	00051-0	0.12500	0.10000	0.07500	0.05000	0.02500	0.0-	-0. CZ 500	CD0200-0-						-0.22500	-0-25000	-C. 27500	-0-30000	-0.32500	-C.35000	-0.37500	-0.40000				-0.52500	-0.55000	-0.57500	-0-60000	-0.65000	-0.67500	-0.7000	-0-72500	-0.77500	-0-80000	-C.82500	-0.85000	-0-87500	-0.90000		-0.97500	-1-00000	-1.02500	-1.05000	-1-07500	-1.12600	-1.15000	-1-17500	-1-20000	-1.22500	-1-25000

232

Figure 69 (Continued)

.

Figure 69 (Continued)

.

58	57	56	55	54	53	52	51	50	6 9	6 4	11	•	* 5	\$	Å.	\$	<u>م</u>	5		י ע - ת	7 0		, . , .	, u.	22	یں ہ بر (8	29	28	27	26	25	2 F J	3 2	5	20	; ; ;	18	17	16	33		12	=	10	، م	30	40	* u	n .r	u ،	2		ío.
-1.25000	-1-22500	-1.20000	-1.17500	-1-15000	-1.125CO	-1.10000	-1-07500	-1.05000	-1-02500	-1.00000	-0.97500	-0.95000	-0.92500	- C. 90000	-0-87500	-0-85000	-0-82500	-0-80000	-0-77500	-0-75000		-0.67500	-0-65000	-0.62500	-0.60000	-0.57500	- C. 5500C	-0.52500	-0.50000	-0.47500	-0.45000	-0-42500	-0-40000			-0.30000	-0.27500	-0-25000	~0.22500	-0.20000	-0-17500	-0.12300	-0.10000	-0. 07500	-0.05000	-0.02500	-0.0	0.02500	0.04300	0.10000	0.12500	0.15000	0.20000	PCL. VELTAGE
9.774651	9.523095	9.254939	9.001038	9.173659	A.567376	8.237951	1 86884 9	6.632515	6.182382	5.796663	5.855299	4 9 20 60 3	5.240375	4.913170	4 904799	5-053918	6-970882	6-265360	6-10F777	6 6 1 9 1 5 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	8. 52 56 36	8.888489	10.912514	10.206327	172568.01	12-111262	12.715566	14.575253	14.180353	15.550492	16-450168	17.660697	18-379640	10 04 1510	10 000517	22.502722	24.818685	26.42374C	31.174242	31-491281	827102 - 77 106610 • 691	-51.586521	-21-190498	~15.323973	-11.046809	-7.323919	-2-711784	- 4, 845530	7085 7 5* 9-	-5-119389	-2.662423	-1.390147	1.066390	RE(E)-EXPT.
-0-0116	-0.000188	- 0.0002 96	-0.000453	-0-000669	-0.000936	-0.001220	-0.001414	-0.001315	-0.000585	0-001235	0.004661	0.010164	0-018159	0.009002	0-043060	C- 060724	0-082424		0-12671-0	26401200	0.262287	0.312433	0.365914	0.421320	0.476801	0.530117	0.578743	0-620080	0.651664	0.671515	0.678287	0-671511	0-231220	6300C5 0		3.476777	0.421289	0-365875	0.312336	0.262194	0 216356	0.139413	J. 103491	0.082360	0.060668	0-043012	34986	7 E LE LO 70	169500 0	0. 201298	-0.00:497	-9.001217	011100 -0-	RELEI-NOOEL
7.019489	6-451417	6.078209	5-435869	5-160440	4 469850	3-917765	2-943750	2-527416	1.384411	0-020652		0-010088	-0-630288 0+5++550	476776 U-	-1-202017	040346 • 1 -	-1-505064	204660" 2		-3.05/58/	-2.717103	-3.916228	-3.878747	-4-785045	-4.950396	-4.747997	-5.441351	-4.777175	-5.434619	-4.521541	-4-665426	- 342 1 10730	- 3- 376600	-3-325614	8 2 5 8 5 1 • 5	-3-487468	- 2. 695293	-3.532465	23.722626	19-401947	566869"91-	-22-258498	2.779462	3.859317	2-430458	-1-764916	- 0 - 694667	3.017174	105155	10.760045	12.321190	12.127912	13.294027	1 H (E) - F XP T.
051000-0-		725000-0-	-0-000523	-0-00836		-0-002054		201000-0-	-0-06762	12210-0-	-0-010203	-0-015253	-0-018127	-0-02020		212020.00		584820°0-	21 5620 -0-	-0.030156	-0.030861	-0.031492	-0.032085	-0.032619	-0.033114	-0 -0 33558	-0.033934	-0.034248	-0-034472	-0-034617	-0-034658	204451.00	-0-034222	-0.033904	-0-033508	-0.033059	-0.032551	H6615U 0-	-0-031279	-0-030654	-0.029213	-0.028326	182220° 0-	-0.026032	-0.024524			-0.01498	0.0110.0	-0.000057	-0.006516	-0.0044R5	-7 -77 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	1 4(F) - MOOFL

NC.	PCL.VCLTAGE	Y1-EXPL.	¥ 1-M019EL	¥7-F XP T.	¥2-₩00EL
ı	C.20000	0.966519	0. 982453	0+001726	0.007311
2	0.15000	0.970300	0.982556	0.003466	0.007259
3	0.12500	C. 97C1 95	0.982609	0.004133	0.007233
4	0.10000	0.971874	0.932655	0.005213	0.007211
5	J.07500	0.974875	0.982700	0.006164	0.07190
6	C.05000	0.977217	3.982744	0.006680	2.007171
7	0.02500	0.978189	0.982793	0.006753	2.007151
8	-0.C	0.980341	0.982940	0.007335	0.007133
9	-0.02500	C.977698	0. 982 894	0.007674	0.007114
10	-0.05000	0.975248	7.992947	0.007307	0.007096
11	-0.07500	0.973684	0.982999	0.007558	0.007091
12	-3.10000	0.972950	0.983050	0.098077	9.007069
13	-0.12500	0.972279	0.983102	0.009629	0.007058
14	-0.15000	C. 970903	0.983157	0.011337	0.00704P
15	-0.17500	0.969060	0.941216	0.013717	0.007039
10	-3.20000	0.964354	0.983279	0.015602	0.007030
U	-0.22500	0.962395	0.983347	0.014790	0.007024
15	-0.25000	0.980945	0.983375	0.014160	9.007034
14	-0.27500	0.982297	0.983435	0.014287	0.007031
20	-C.30000	0.983929	0.983493	0.013844	0.007030
~	-0.32500	0.984486	0.983550	0.013497	0.00702B
22	-0.35000	0.985992	0.983600	0.013421	0.007028
23	-0.37500	0.986441	0.983644	0.013507	0.007027
29	-0.40000	0.987196	0.983677	0.013013	0.007026
27	-0.42500	0.986931	0.983699	0.012637	0.007025
20	-0.43000	0.997010	0.981707	0.015148	0.907024
21	-0.47500	0.987424	0.983701	0.011941	0.007024
20	-0.52500	0.907454	0.003661	0.011444	0.007023
20	-0.55000	0.907434	0.933031	0.011615	0.007023
30	-0.57500	0.987666	0.093669	0.011014	0.007022
32	-0.60000	0.987797	0.993503	0.010629	0.007025
33	-0.62500	0.987300	0.083666	0.010264	0.007074
34	-0.65000	0.988329	0.983 182	0.010425	0.007020
35	-0-67500	0.987653	0.483323	0.009768	0 007032
36	-0.70000	0.988633	0.981263	0.009678	0.007037
37	-0.72500	0.987866	0.983209	0.009310	0.007061
38	-0. 75000	0.987360	0.983158	0.008882	0.007046
39	-0-77500	0.987797	0.983109	0.008685	0.007053
40	-0.80000	9.987775	0.983064	0.008671	0.007060
41	- C. 82500	0.988692	0.983021	0.008799	0.007069
42	-0.85000	0.987095	0. 982 984	0.908254	0.007076
43	-0.87500	0.987115	7.982948	0.008164	0.007085
44	-0.90000	0.987368	0.987914	0.008070	0.007095
45	-0.92500	0.987938	0.982881	0.008064	0.107105
46	-C. 95000	0.988090	0.982850	0.007754	0.007116
47	-0.97500	0.989909	0.982818	0.097725	0,007129
43	-L.00000	0.989985	0.982788	0.007667	0.007141
49	-1.02500	0.991028	0.982758	0.007608	0.007155
50	-1.05000	0.993183	0. 982 725	0.007184	0.007171
51	-1.07500	0.994329	0-982692	9.097060	0.007187
52	-1.10000	0.999220	0.982653	0.007222	3.007207
53	-1.12500	1.901641	0.992616	0.007080	0.007225
54	-1.15000	1.005850	0.982575	0.007117	0.007746
55	-1.17500	1.006623	0.982539	0.006660	0.017265
56	-1.23000	1.010652	0.992495	0.005249	0.007297
57	-1.22500	1.014219	0.982451	0.006710	0.007310
59	-1.25000	1.019694	0.982403	0.005835	0.007334

Figure 69 (Continued)

ANALYSIS OF INTERFACIAL RIPPLE DATA MEASURED AT THE POLARIZED 0.000025-M NADS

.

IN 4/20 NA2504---DATA OF G.P.BIERWAGEN(3-20-68) TRY#1

MEASUREMENTS MADE AT	0.000025-4 NACS IN 4/20 NA2504	/ PURE MERCUPY	INTERFACE
0.000025-M NADS	IN C.050-4 NA2 SC4		

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCUSITY OF UPPER PHASE 0.0039400 VISCUSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 6.92600000 MV. INITIAL DAMPING COEFFICIENT 0.57495 1/CF. WAVELENGTH 0.12880 CM. PROBE SEPARATION = 1.19100 CM.

WAVENUMBER = 48.782448 RECIPROCAL CH.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

SURFACTANT CONCENTRATION= 0.000025-M NACS

ELECTROCAPILLARY MAXIMUM IS -0.45000 VCLTS VS. S.C.E.

FRUMKIN EXPONENT= 1.50000

ELECTRICAL DESCRPTION EXPONENT = 12.50000

MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000

DIFFUSION TERM= 455.00

SURFACE VISCOSITY OF PURE INTERFACE= 0.000010

SURFACTANT SURFACE VISCOSITY= 0.000500

1/BO = ERUMKIN CONCENTRATION CONSTANT= 0.000250

Figure 70. YCOR data listing for 2.5 x 10^{-5} -M NaDS in .05-M Na₂SO₄

	U MM DU	353.872700	345.715509	371.894200	377. RDP R00	004442*646	392. 695300	196.599600	400- 015300	402-99R000	405.606200	407.899100	404*930900	411-750000	413.395700	005/54****	417 552000	618-775500	419-799000	420-770000	421-632800	422.379100	422 °999 200	423.484800	423+827600	424 °019500	424°056600	423 652500	423 210400	422.610300	421-854700	420.948900	419.898100	418° 708290	415-933800	414.359600	412.666000	410.862500	408,945300	000524-004	402.547800	400 - 214500	397.762609	392.556600	389. 781000	346. 440600	783.910400	380. 820500	177.599300	374.317600	5 CO. 4 CH 6 DO		
	rutput vcltage(4v.)	R_R24000	a.629000	1078FT	1000377 8 8		1000552	7.807000	8.04000	A.470000	7. RKENOD	7.734000	7.131000	6. 044000	000054.5		000012°r	5.088000	5-624000	5.491000	5.785000	5.934000	6.044000	6. 218000	6.464000	6.689000	0, 926000 7 _ 1 60000	7.408000	7.599000	7.743000	8.133000	8.336000	6 .5R5000	8- 674000		9.472000	R.912000	9.036000	8.674000 8.820000		B.623000	8.5R6000	8.466000 8.572000	8.641000	8.422000	R_001000	8.149000	7.908000	R.056000	7.994000 140000			
INPUT DATA	FREQUENCY	264.00000	268.20000	270.40000	000000 212		277-90000	279. 20000	280.20000	281.600000	282.50000	263.30000	284. 000000	284.400000	284 • 6 00000	285.00000	285.10000	285. 20000	288.300000	289.10000	289. 40000	290.10000	290.40000	290, 700000	000006*062	290.99000	291.10000	291. 10000	291.00000	290. 80000	290. 60000	290.20000	289° 700000	269.00000	288.40000	287.80000	287.20000	286. 50000	000001 395	285,00000	284.70000	283. 70000	243-00000	281.40000	283.80000	279-90000	279- 200000	278.30000	2 77. 600000	277.100000			
	PCL.VOLTAGF	0*20000	0. 150000	0.125000	0.076.000		C* 025C00	-0-0-	-0.025000	-0.050000	-0 .0 75000	-0*100000	-0"125000	00001-0-		- 0° 5 2 5000	+0-25000	-0*275000	-0-300000	-0-325000	-0 •350000	-0.375000	-0- +00000	-0.425000	~ U. 450000		-0.525000	-0.550000	-0.575000	-0* 600000	-0.625000	-0.650000	-0-612000	-0.725000	-0-150000	-0.175000	0-80000	-0-922000	000928-0-	000000-0-	-0.925000	-0-95000	000416-0-	-1.025000	-1.050000	-1. C75000	-1.10000	-1.125000	000041-1-	0004/1-1-		(beintituci) ('	
	20.	7	2	•	₽ y	~ 4	. –	er	•	50	11	12	n :	1:	5 2	22	E E	61	2	21	22	2	*2	5,7	9;	21	59	2	16	32	6	4 L	\$	20	38	39	Ş	¥ (1	45	9 P	- 84		50	15	52	5		5	R	Figure 7	

INITIAL FREQUENCY = 291.20000

PELYNCHIAL	COEFFICIENTS OF AMPLITUDE	CORRECTION
	0.38304800500	05 FREQUENCY ## 0
	-0.91744236360	C5 FREQUENCY## 1
	0.94076382080	05 FREQUENCY## 2
	-0.53537717780	05 FREQUENCY ## 3
	0.18261569010	05 FREQUENCY** 4
	-0.37334783680	04 FREQUENCY ## 5
	0.42360536090	03 FREQUENCY## 6
	-0.20576723560	02 FREQUENCY** 7
	0.0	FREQUENCY . 8
	0.0	FREQUENCY** 9
	0.0	FREQUENCY**10

NC.	FREQUENCY	CORRECTED OUTPUT VOLTAGE	NO.	FREQUENCY	CCRRECTED OUTPUT VOLTAGE
1	264.00000	5.75901	29	291.10000	7.15088
2	268.20000	6.02587	30	291.10000	7.39856
3	270.40000	6.29812	31	291.00000	7.57962
4	272.10000	6.31519	32	290.80000	7.70346
5	273.90000	6.41905	33	290.60000	8.07060
6	275.90000	6.17246	34	290.20000	8.22906
7	277.80000	6.44031	35	289.70000	8.41908
8	279.20000	6.48861	36	289.30000	8.46086
9	280.20000	7.44520	37	289.00000	8.48478
10	281.6000	7.33723	38	288.40000	8.85903
11	282.50000	6.91856	39	287.80000	9.04908
12	283.3CCOC	6.89360	40	287.20000	8.44082
13	284.00000	6.42924	41	286.50000	8.47036
14	284.40000	5.48441	42	285.80000	8.04540
15	284.6000	5.12508	43	285.10000	8.11005
16	284.60000	4.84288	44	285.00000	8.16329
17	285.00000	4.80765	45	264.70000	7.86213
18	285.3CCC0	4.76031	46	283.70000	7.70340
19	285.70000	4.71205	47	283.00000	7.50870
20	288.30000	5.41095	48	262.00000	7.47972
21	289.10000	5.34158	49	281.40000	7.45985
22	289.40000	5.65046	50	280.80000	7.19631
23	290.10COC	5.85019	51	279.90000	6.73108
24	290.40000	5.98207	52	279.20000	6.77286
25	290.70000	6.17828	53	278.30000	6.47080
26	2 90. 9 0000	6.43926	54	277.60000	6.51275
27	290.90000	6.66340	55	277.10000	6.40743
28	291.10000	6.91718	56	276-00000	6. 41963

.

Figure 70 (Continued)

(blf) γίαμα(αυτι	476 1.592.7	144 U. 1555	742 0.353744	668 J. 351444	772 1. 350740	569 7.44072	996 0. 148 162	727 0.347476 DEE 0.377753	19404/00 CL2 1963/00 CL2	14764640 176	2115-57E U 215-57E U	0.00000	196 0.344557	794 0.344082	147 A. 143571	17A 0.143553	786 0.343916	342 0. 344274					172 0. 15195R	133 0. 352158	404 0. 351829	720 0.751424	122 0. 350631	532 0°349785	1911 0 191	132 0.347433	206 0.346818	039 0° 346320	382 0.346127	512 0*346219	191946 °C 1 1979 1979	A74 0. 346449	341 D.346656	158 0.346961	438 0* 147351	944 II.34845R	506 0 10 164463 Lan 0 340764	0-350476	371 0. 350966	126158-0 509	804 0.353093	919 0. 354042		030 C. 957726 Anti 157726	794975 U 7979767	119090 0 360611
ר קו איי (דא	HP71.C	J• 69 °C	U *4541	り。 ちちアム	9.5387	J \$ 716	0.6359	1953.C			0.5788		0.7708	n. 9277	F278+0	2 I H 8° 0	0.9497	1998.C	19252 O	16 57 °C			9.6708	0.6361	0.6774	9.5760	0.5481	0.5195	0.4856	0.4465	0.4302	0.4110	0.4069	5404 °0	7496 • 0	0.4088	0.4059	16441	0-4454		0 4054	0-5071	0-510	0.5126	0.5428	0* 59RG	0.5431	0 - 6 26	0.6602	LARA D
THFTA FREV MUDI-	0.107500	511100-0	o-00160a	いっさくしん。ひ	012100 0	0. 004433	1:0900.0	480860°0		T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-02622	0.028245	0.034783	0-042242	0.050591	0* 059739	0 • 0 6 9 5 2 5	0-01912	0.0000		0.116689	0_127918	0.125727	0.128029	0.126727	0. 122918	0.116888	1506010	0.089979	0.079712	0.069525	0.059739	162020	0-142242	0.024260	0.022622	0.01 7967	0+013914	0.010584	0.00000	1609000-0	0.003710	0.002290	0.001609	611100*0	0.00759	0*000203	055000-0 012000-0	0- 0001 40	0.00008
GA444 (F XP 1°) CALC • 5 = 0	J55.52751	364.87435	37247642	377.34713	382.71 022	387.79572	56663° 575	3400 0005	2014-2024 2014-2024		404 - 204 -	410.51592	411. 50405	46900.114	411.53069	413,06069	413 400356	415°C3234	4224054	4744777 475, 88414	477 94861	428.84167	429.74428	430.36320	430.39190	431 -00364	431 °02 799	4314(5122 430 77534	4 30 - 2 C 2 90	429 64699	428 44416	427-05380	423.85685	22515 524 22515 527	421.59046	419-83618	411.82759	415.79809	413.80184	89515-514	400-704	407-78950	404 . 95844	403.26492	401°52428	399.99269	397, 02760	597,54114 397,54114	391.14057	188.09740
ריע 1CF PJL אייע PJL	0.0005.0	C.15000	0.12500	00001.0	0.07500	0.05000	00620.6	~J.U			-0000	- C. 12500	-0.15000	-0.17500	- C. 20000	-3.22500	- C. 25000	-0.27500	-0.33550		-0-37500	-0.40000	-0.42500	-0.45000	-0.47500	-0.50000	-022200	-0.055.0-	-0-60000	-0.62500	-0.65000	-0.67500	-0.10000	00421-0-	-0.77500	- 0. 80000	-0.82500	-0-85000	-0.67500	00000-0-	-0.5500	-0.97500	-1. 0000	-1.02500	-1.05000	-1. 01500		115000	-1.17500	-1-20000
ŗ.	-	~	-	t	ſ	e١	- 1	n 1		2 =	:2	12	1	15	16	11		2 ;	22	:	17	**	25	26	27	28	5	22	22	12	4 6	5.3	<u>e</u> ;		2 2	; 🖓	14	42	; ;;	9 U	n e	14	84	64	ŝ	2	25	. .	52	ŝ

Figure 70 (Continued)

Figure 70 (Continued)

56	55	54	53	52	51	50	5	4 B	5	4 6	5		2	; 1	5	39	38	37	36			2 2	3 Lu 7 -	30	29	28	27	26	25	20	35	321	20	19	18	17	75		13	12	11	10	: م	ю.	4 3	r un	1	ىر	~ ,	- •	45.
-1.20000	-1.17500	-1.15000	-1.12500	-1-10000	-1.07500	-1.05000	-1_02500		-0-97500	-0-95000	- 0- 92 500		-0-85000	00528.0-	- 0. 80000	-0.77500	-0.75000	-0.72500	-0.70000		-0.45000	-0.0000	-0.57500	-0-55000	-0.52500	-0.50000	-0.47500	- C.45000	-0.42500		-0-37500	-0.32500	-0- 30000	-0.27500	- C. 25 COO	-0.22500		-0.15000	-0.12500	- C+ 10000	-0.07500	-0.05000	-0.02500			0.07500	C. 10000	J-12500	C.15000	00000 - 20000	POL_VELTAGE
12.452979	12.589667	12.669088	646896°21	12 • 549263	12.826053	11.819483	11-090831	10-01101	10,244767	10-231476	10.00055	1 24566 5	6.883615	5.280863	5.727680	4.283940	4.900713	6.315846	5-772954	5.890770	1 1 27 7 2 1 2 1 0 1 5 5 1 • D	9-854068	10.575587	11.662400	13.376294	15.136254	17.560357	18.777564	20-561426	664030 -CC	1 44674° 67	25.429678	28.185565	25.381295	25.594522	26.117935	511524°67	E18605 55	53-670690	74.847335	75-044957	-8.3R3966	*********	60 170203	50 10005 51 10005	299246C	53.753579	49.873207	40.796361	6615667554 • • • • 5 = 1 : 1 : 4	R = (C I - C KO T
-0.000281	-0.000419	-0-00584	-0.000743	-0.000787	-0.000476	0-000636		0-004513	0-017514	0-031581	0.051063	0 0 700 64	0.164105	226622 0	0.298416	0.389724	0.500280	0.632236	0.787277	0.944193	1 1 6 8 1 7 0 4 8 4 4 8 5 • 1	1.625734	1.865697	2.096689	2.302541	2-466070	2. 571 595	2.608105	2.571583	2- 444035	796960 °2	1.865579	1.625579	1.349687	1.167822	0.965900	202150-0	2.00024 2.00024	0.399516	0.298209	0. 223775	0.163907	0-116486	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3. n1 7426	7.034498	1.100.196	3.037722		170FL-1-170FL
5-679112	5.54694 B	4 .68591 4	4.001846	3. 549985	2 B18279	2-462131	1.512017	C 127201	0 737510	1 004001		602700 E-	-3.423161	-1.657143	-1.52617A	0.807821	0.213214	-0-832696	-1.538716	-1 -1 -1	861456 1 -	-3.159650	- 3.41 8445	-3.951953	-4-6309999	-4.608464	-5-055247	-3.614742	-2-48505	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	0-040135	3.134065	3.750611	15.878453	16.001086	15.660263	15.575487	10.747091		-39.581067	-44.732867	· · · · · · · · · · · · · · · · · · ·	202144.01-	101001	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	26.387578	16.707950	-2.651089	1 9 0 0 0 1 1 9 0 0 0 1 1 0 0 0 0 0 0 0	1-015802	1 4 1 F 1 - F Y D T
-0.000334	-0.000551	E U6UGU - U-	-0.001474	-0.002394	5 2000 C-					414720 0-		996960° 0-	-0.039814	-0.042763	-0.045312	-0.047563	-0.049612	-0.051530	-0-053362	-0 -0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	-7-054640	-0.060304	-0.061874	£62£90° 0-	-0.064497	-0.065421	-0-065096	-0.066196	-0.065988		-0.063233	-0-061811	-0.060228	-0.358503	-0-056788	-0-05503A	-0.051428	-0-049518	-0.047470	-0.045210	-0.042648	-0	C01250-0-		015250	-9.917424	-9.112724	-0.008774	-) -)/5750	010000-0- 1	14-5-160051

1	C. 20COC	C. 573391	942378	0.014962	0 - 00 7351
2	0.15000	0.971939	0.932518	0-014192	0.007281
•	0.125CC	0.971535	3-982590	22111422	446600.0
4	C.10000	0.968398	0. 932565	0-113775	512400°C
s	0.07500	0.967201	0.982734	0.013094	0-007182
ø	C.05000	C. 968812	10.982 197	0.013769	0.007159
~ *	0.02500	0.971121	0.982359	7.0510.0	0.007139
ne		112116-0	7.982925	0.012909	0.007121
• •	-0-02000	0° 404844	3492996	0.010542	0.1100
	-0-07500	0.072700		0,010,03	10200°0
	-0-10000	0.972310	0. 983241	0-011867	480100°0
m	-0.12500	0.972278	0.983347	0-013067	020200-0
•	-0.15000	111010.0	0.983471	0.015803	0-001065
Ś	-0.17500	0.968207	0.943615	0.016969	0 -007062
بە	-0.20000	0.964702	0.983783	0.017944	0.007060
	-0.22500	C. 964206	8965660	0.018070	0.077064
	-0.25000	0.963291	0.984176	0.018240	0.007070
	0.0275.0-	0.963287	0-984404	0.018415	0.007080
2.	-0-30000	0.978391	0.984622	0.016035	9.007104
- 5	00676 .0-	BCC186°0	0.984865	0.016257	0.007122
N	-6.37000	0.981583	0.985104	0.015289	0*1200*0
1	00515.0-	0.98499	0. 995314	0.014691	0 .007160
, 		081684 0	0.985484	0.014308	0* 0071 75
	-0.45000	0.036660	10 085623	20131363	581/00°0
, ~	-0.47500	0. 004500	360606 N	040510-0	881200-0
. 80	- 0 50000	0-987473	0.985685	0.011608	0.007173
	-0.52500	0.987755	0.985316	0.011236	121260°0
	-0.55000	0.988414	0.985103	0-010650	20110-0
	-0.57500	0.988767	0.984867	0.010234	0 .007115
N 1	-0.000	0.988811	0.984623	0*009955	0.00707
•	-0-20	0.000,00	0.984384	0.009154	0.007083
	-0.67500	0.987681	201486 0	0.008819	0 •007071
	-0-7000	0.987756	464604+0 0-983778		290100 0
	-0.72500	0-988035		0-008302	20100-0 707050
, 8	-0.15000	0.988168	0-983481	0-007549	0.007057
•	-0.17500	0-987799	0.983363	0.007184	0.007059
	-0-80000	0.987722	0.983262	0.008382	0.007063
	-0, 82500	0.987227	0.983176	0.008321	0.007068
		210784 0	0. 983102	0.009207	P10100.0
•		100186.0	0.983038	020600 *0	0.007082
	-0.97500	0.04407	016704 0	1 4 4 9 0 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60100°0
	-0.45000	0.001780	776701 M	+09500 0	401/00°0
	-0.97500	0.994978	20230700 0.98282	0.010304	0°00114
	-1.00000	0.994357	0-982808		
, •	-1.02500	0.996805	0.982772	010508	0-007151
	-1.05000	0. 999627	0.982737	0.011127	0.007167
	-1.07500	1.000676	7.982704	0-012277	0.097182
	-1.10000	1.003380	9.982668	0.012171	0-007200
	-1.15000	010500*1	n. 982632	0.012956	0 -007219
• •	-1.17500	1 01 34 30	0.982592	5982100	0-007238
	-1-20000		0.00000	0.013125	0*001260
	nnnn2•1-	1.014852	0,947500		

ANALYSIS OF INTERFACIAL RIPPLE DATA MEASURED AT THE POLARIZED M/20,000 Mans

IN M/20 NA2504---CATA OF G.P.BIERWAGEN(3-14-68) TRY#1

MEASUREMENTS MADE AT M/20,000 NADS IN M/20 NA2SO4 / PURE MERCURY INTERFACE 0-00005-M NADS IN 0-050-M NA2SO4

DENSITY OF UPPER PHASE 0.997CC DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 8.45900000 MV. INITIAL DAMPING COEFFICIENT 0.57478 1/CM. MAVELENGTH 0.12066 CM. PROBE SEPARATION = 1.56700 CM.

WAVENUMBER = 52.073424 RECIPROCAL CM.

.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

SURFACTANT CONCENTRATION= 0.00005-# NADS ELECTROCAPILLARY MAXIMUM IS -0.52500 VOLTS VS. S.C.E. FRUMKIN EXFONENT= 1.50000 ELECTRICAL DESORPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/B0 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

Figure 71. YCOR data listing for 5 x 10^{-5} -M NaDS in .05-M Na₂SO₄

40 .	PC1 . VC1 1 AGE	FREGUENCY	A WEADAT IN THEIR	
-	0.20000	240. 520000	8-126300	175, 717701
2	0.150330	295.630000	F. 3 9600	1981.2000
	C. 1250UC	247.30000	00001 5° R	384, 200703
4	0.10000	295,60000	R.419000	386.50000
je v	0.075000	301.400000	R.762000	389.961600
0 1	0. 55555	304 20000	B .940700	391.130607
- 7		505. 500000	B.945000	143.700600
	-0.025000	305.60000	0006471 ***	396. 595609 399.076700
10	-0.05000	000000.015	A. 974000	401-629507
11	-0.075000	311.400000	8.707000	404.010400
12	- 0. 10000	311.800000	R.177000	404 19904
13	-0.125000	312.700000	7.658000	408.196203
14	- C. 1 500CC	313 40000	7.370000	410.013400
	-0-175000	314. 500000	7.482000	411.671100
17		115 770000	7.453000	413.190109
16	-0.250000	316-200000		414.3H4300
19	-0.275000	316-600000	7.583000	002100111 717 081700
20	-0.30000	317-20000	7.718000	0000001-814
21	-0.325000	317+800000	7- 908000	419-211100
22	-0.3500CC	319.10000	7.884000	420 137600
23	-0.375000	318.30000	7.879000	420.963800
24	000000	318.50000	7. 880000	421.679600
25	-0- 425000	316-500000	7 -95 9000	422.273900
20	-0.450000	319-00000	8.187000	422.735300
	0.00000	000001*616	8.277000	423.052900
07 DC			8.459000	423° 217000
30	-0.55000	31 B 70000	001464 B	423.719400 233 ACEANN
31	-0-575000	31 7 60000		422.722600
32	-0.600000	318-50000	9.021000	005371532
33	-0.625000	318-30000	9.271000	421-547300
36	-0.450000	318.100000	9.473000	420.710409
	-0.675000	318-000000	9*670000	419.715000
17	- (. 725000	31 4 100000	9 468000	418.567100
38	-0.750000		000421 0 2 720000	1064/2*/14
39	-0.775000	315-70000	9,925000	414-286300
40	-0.80000	315-40000	10-042000	412.602700
41	-0.825000	314_400000	9*927000	410.806900
42	-0-850000	313. 700000	9.801000	408.891300
55 55	-0.4875000	312.800000	9. 627000	406.874700
45		11 200000	000244.6	404* 14500 004507 202
46	-0.950000	000000 016	000000000000000000000000000000000000000	400-150304
47	-0.975000	309.400000	9.497000	397.690900
49	-1.00000	308.100000	9.270000	395.132300
49	-1.025000	306.800000	9.089000	392.464300
51		306.00000	9.243000	389.677900
42 62		303 000000	4. 100000	386 - 761 700
15		000004 605	0.000000	000012 005
54	-1-150000		9, 061000	377-507803
55	-1.175000	000006 662	B. 802000	00722-27F
56	-1.20000	299. 00000	8.947000	000716 021
57	-1.225000	297.60000	8.804000	367.573999
58	-1.250000	296.400000	R.753000	369.925707
Figure 71	(Continued)			
1. (******				

INPUT TATA

INITIAL FREQUENCY = 319.20000

POLYNOMIAL	CCEFFICIENTS OF AMPLITUUE	CORP ECT ION	
	G. 383C48005CD	C5 FREQUEN	Y** 0
	-0.91744236360	05 FREQUENC	Y** 1
	0.94076382080	05 FREQUENI	CY ## 2
	-0.53537717780	C5 FREQUENC	Y** 3
	0.18261569010	05 FREQUEN]Y≠≠ 4
	-0.37334783680	04 FREQUEN	CY** 5
	0.42360536090	03 FREQUENC	Y## 6
	-0.2057672356D	02 FREQUEN	CY** 7
	C + C	FREQUEN	CY** 8
	6 . 0	FREQUEN	Y** 9
	0.0	FREQUEN	CY **10

NC.	FREQUENCY	CORRECTED OUTPUT VOLTAGE	ND.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	250.60000	5.62009	30	318.70000	8.68520
2	295.60000	6.17779	31	319.60000	8.90921
3	297.80000	6.36068	32	318.50000	9.01702
4	299.60000	6. 52071	33	319,30000	9.26392
5	301.80000	7.00237	34	318.10000	9.46185
6	304.20000	7.41689	35	318.00000	9.65629
7	305,90000	7.65110	36	317.10000	9.42404
8	307.40000	7.98904	37	316.70000	9.65895
9	308.60000	7,95065	38	316.10000	9.62722
10	310.0000	8.21567	39	315.70000	9.79170
11	311.40000	8.15264	40	315.40000	9.88244
12	311.8000C	7.70312	41	314.40000	9.67462
13	312.70000	7.30828	42	313.70000	9.47551
14	313.40000	7.09883	43	312.80000	9.19996
15	314.50000	7.29957	44	311.90000	9.01187
16	315.10000	7.31483	45	311.20000	8.82275
17	315.70000	7.47425	46	310,30000	8.70913
18	316,20000	7.55541	47	309.40000	8,60741
19	316.60000	7.52695	48	308.10000	8.21659
20	317.20CCC	7.68566	49	306.80000	7.87729
21	317.80000	7.89242	50	306.00000	7.90178
22	318.10000	7.87472	51	305.00000	7.64964
23	318.30000	7-87298	52	303.90000	7.63445
24	318.50000	7.87652	53	302.60000	7.35290
25	318,50000	7.95549	54	301.40000	7.18281
26	319.00000	8.18684	55	299.90000	6.84545
27	319.10000	8.27700	56	299.00000	6.88918
28	319.20000	8.45900	57	297.60000	6.64165
29	318,90000	F. 63847	58	296.40000	6.59432

Figure 71 (Continued)

46	PELSVELTACE	GAMBALEAR', MALE SC	THE EX ENDER NOTEL	AL PHA (FY PT)	1. 2012 - 12051 1
L	0.20002	353.6530.2	1.1.1.1.1	3. 475714	. 174 11
2	C.15000	165.77627	1, 1-1-77	3.776336	375 30
i	3.12500	371.16794	1, 121,219	7 75671 -	17551
4	C.10C00	115.60170	3, 1115 22) 740960	· · · · · · · · · · · · · · · · · · ·
5	9	241. (9115		0 406381	176
4	0.05000	337.10945	1,11777	0 460400	
7	0.02500	351, 353.67	1 104501	1.00000	
4	-1 0	105 70134	0.005-21-3	0.03554	
ò	-2 01520	304 3414	0,0,00000	7.01127-	1.175.00
10	-0.02300	202124112	0.0100448	9.614331	1. 17211
1.5	-3.07503	101102101	0.012211	9.593408	0.377135
15	-0.01900	101.20102	94916442	0.598121	0.377216
12		405.39457	9.921844	0.634516	0.376419
12	-0.12503	407.67385	0.028652	0.668094	0.376333
14	-0.15000	419.46528	0.037116	0.686651	1.375247
15	-6.17500	413-32324	0.047509	0.668855	C. 376821
15	-0.29000	414-87867	0.060121	0.667522	0.377187
17	-0.22500	+15.44813	0.075252	0.653764	0.377981
13	-0.25000	417.75411	0.0932.03	0.646871	0.379304
14	-3.27500	413.79344	0.114266	0.649290	0.381510
20	- C. 30000	420.36961	0 - 1 3 86 96	0.636963	0.385530
21	-0.32500	421.95151	0.166665	0.619023	0.392235
22	-0.35000	422.73524	0.155180	0.620455	0.403138
23	-0.37500	423.25982	0.232909	0.620596	0.421336
24	-0.40000	423.78308	0.269939	0.620309	0.450757
25	-0.42500	423.78836	0.307438	0-613943	0.493968
25	-0.45000	425.11466	0.342446	0.595650	0. 548784
27	-0.47500	425.38271	0.371189	0.589660	0.601944
28	-C.5COCC	425.65600	0.390051	0.574780	0.639087
29	-0.52500	424.87822	0.396612	0.561382	0.651615
30	-0.55000	424.35598	0.390051	0.557940	6 6 3 9 6 7 6
31	-0.57500	424-10519	0.371188	0 541689	0.00000
32	-0.60000	423,84825	0.342446	0.534012	0.669001
33	-0.62500	423.33550	0.307438	0 514772	0.606(00)
34	- C. 65CCO	422 82 01 9	0.269939	0 501292	0.499579
35	-0-67500	472-56626	0 232909	0.00301	0.431305
36	-0.70000	420,20447	0.198180	0 505937	0.472115
37	-0.72500	419,17054	0-166666	0.00126	0.403319
38	-0.75000	417-60667	42 48 61 0	0.490170	0. 392513
39	-0.77500	415.57279	0.116266	0.4972227	1.385048
40	-0.80000	415, 75684	0 003203	0.401415	0.382513
41	-0.82500	413 19701	0.075205	1.475524	0.380720
42	- C. 85000	411-37962	9.077272	0.284041	0.379206
43	-0-87500	409 64741	0,000121	0.502361	0.379652
44	-0 90000	404 71503	0.07704	0.571145	0.378310
45	-0.90000	406 • 72 203	0.037116	0.534377	0.379267
4.6	-0.95000	494.92099	0.028652	0.547912	C. 378659
40	-0.43000	402.01330	0.021944	0.554183	7.179779
	-0.97503	400.31272	0.016442	7.563691	1.379477
10	-1.0000	396.98787	0.012211	0.503135	0.379641
4 7 5 0	-1.02500	393.67782	0.008946	0.620247	0.379912
50	~ [. 05000	391.65172	0.005462	0.618266	0.340436
21	~1.07500	389.13105	0.004601	0.638962	0.391691
52	-1-10000	386.37348	0.003229	7. 640230	1.3425.19
53	-1.12500	383.10931	0.002232	0.664210	0. 383744
54	-1.15000	337.11403	0.001520	0.479145	0.384231
22	-1.17500	376.37582	0.001019	0.709845	9.384950
56	-1-20000	374.16115	0.000673	0.705781	0. 386445
57	-1.22500	370.70326	0.000439	0.729132	0.197494
54	-1.25000	367.75785	0.000281	0.747466	0.399909

Figure 71 (Continued)

58	5.0	ית די	01 V 07 V	5.6	ر دان الري	5.5	2 2	5 4	5 2	47	46	4 5	**	4 3	2	2 2	5 3	38	37	36	35	ч 4	ωι ω Γ	ರ:	- 2	3	28	27	26	25	24	5.5	32	20	19	18	17	5		: 5	12	:	10	- a	ы.	• •	. un	r (۲ س	·	۹С.
-1.25000	-1-22500	-1-20000	-1.17500	-1 15000	-1-12500		-1.07500	-1.02300	00000-1-	-0.97500	-0.95000	-0.92500	00000+0-0	-0.87500	- C. 85000	-0.92000		-0.75000	-0.72500	-0,70000	-0.67500	-0-65000	-0-62500	-0-6000	-0.57500	-0.52500	- Ct 5000C	-0.47500	-0+45000	-0.42500	-0.40000	-0-33500	0.0525.0-	- c. 30000	-0.27500	- C. 25000	-0-22500	-0.20000	-0.13500	-0.12500	- C. 10000	-0.07500	-0.05000	- 6. 02500		0.02000	0,07500	C. 10000	0.12500	C- 200C0	PCL.VCLTAGE
22.360269	24 .56 38 64	71. 681813	31.079007	75 978771	26-163945	21,804591	241010°17	C 1 0 C 0 C 1 C	51515 - FI	5 26669 9	4.687945	2.815388	-3.317940	-4.202388	-4-320416	1 / 1 / 0 1 • 7 -	-7 184701	-11.855253	-10.465866	-11.519594	-2.630126	-6. 556249	-7-367009	-4-431149	-4.246704	3 000/5/	12-148474	15.989184	17.630507	28 - 544675	24.825965	23-546250	20. 193311 21 783830	26.909849	33.062973	31.044841	31.923499	34.734797	75 132210 05 05 11 • 64	51.962745	65*542340	21.092365	43.535073	161.802442	147.789877	27.927470 27.927470	18-237365	16-136129	15.113800	13.055211	RE(E)-EXPT.
-0.000410	- 0- 000520	-0-00524	-0.000184	C- 00086	0-003888	966600 0	0-071182		9.113965	0-174639	0.256715	0.365832	0.509314	0.696843	0.940971	1-252877	000077 I	2.879849	3.751046	4.852751	6.220882	7.867189	9-744506	11-702356	13-469543	15.162148	14-713268	13.469605	11.702416	9.744530	7.867235	4 0 2 2 0 0 1 7	2.953847 2.1111	2.879973	2.198324	1.668386	1-259015	0.941116	0.507013	0.365967	0.256839	0.174785	0-114079	070516	0-040433	70515C C	666 EUC	5666.6.6	-9.001172	-C-C-C-C-A-C-A-C-C-C-C-C-C-C-C-C-C-C-C-	3 = (=) - 4-30 = L
-5.430602	-7.398752	-0.471757	- 11-051816	-14-443703	-17-580326	- 19_ 755111	-21347412	001740 40 T		- 22 • 796350	-23.986874	-73.660773	- 26. 37573A	-22.067090	-16-697773	-14 97971	-10 353101	-18-367560	-17-470850	-23.190412	-13-857178	-19-841551	- 25- 475915	-31.796673	-37-670658	- 36 - 100520	-25.45550	-26.188745	-25.150692	- 32. 506676	-24.748165	-23-052042	-20-669576	-21.516877	- 21. 58991 3	-21 .3 99075	- 19. 962751	-17.435697	-17 335013	-17.186610	-36.473726	-40.881130	-95.063674	1.331711	73_1850133	54.4/447/	26.51 957	220100.52	26. 320714	14.270579 14.735421	IN(F)-EXPT.
-0.000660		7 UDI UU U-		-0-0000000	-0-008848		-0-02645	200000	9145516	-0-053598	-0.050784	-0.067138	-0.072787	-0.077924	6 4 2 2 8 0 10-	-0 097646	840760°0-	-0.107286	-0.107989	-0-114390	0.8121-0-	-0-130497	-0-140710	-0-152055	0.163230	-0-174838	-0-171728	-0 -163304	-0.152155	-0.140729	-0.130524	-0.171813	200801.0-	-0.102290	-0.097066	691260.0-	-0.087436	-0.087742	161 21 0 • 0	-0.067153	-0-060811	-9.053652	-0.045642	-0.037055	0-0-0-10-10-10-10-10-10-10-10-10-10-10-1	-0-0202847	626600° U-	10,00000	BU 2500 0-	-0,000642	I M(E) - MODEL

¥

NC.	PCL.VCLTACE	Y1-EXPT.	Y 1-MODEL	¥2-F XP T.	45-460E1
1	C.20CC0	0.914886	7.992413	3.016049	9.007325
2	0.15000	0.931243	0.987454	0.014889	0.077324
3	0.12500	0.938264	7.992473	0.014532	0.007294
4	0.10000	0.943493	0.992493	0.014227	9.117785
5	0.07500	0.951345	7.982509	0.013354	0.007279
6	C. C5CC0	0.961155	7.982522	1-012649	0.007276
7	0.02500	0.965605	7. 982 552	0.012268	0.007268
8	-0.0	0.968459	0.982594	0-011738	0.007259
ġ	-0.02500	6. 969493	1-982668	0.011797	0 007260
10	-0.05000	0.972086	0-992711	0-011396	0 007747
ii	-0.07500	0.975104	0.982787	0.011490	0.007237
12	-0.10000	0.972343	0.982890	0-012185	0 007229
13	-0-12500	0.973191	0.983011	0 012830	0 007225
14	-C-15000	0.973210	0.983164	0 013196	0.007224
15	-0.17500	0.976108	0 993354	0 013844	0.007224
16	-0.20000	0.976234	0.983607	0.012819	0.007225
17	-0.22500	0.976648	0.903022	0.012619	0.007258
18	-0.25000	0. 976696	3-984341	0.012422	0.007277
19	-0.27500	0.976356	0.084888	0 012422	0.0072277
20	-0.30000	C. 977459	0.985601	0.012213	0.007308
21	-0.32500	0.978773	0.986532	0-011897	0 007526
22	-6-35000	0.978459	0 987779	0.011016	0.007720
21	-0.37500	0-977767	0 0 0 0 7 0 7 7 2 7	0.011019	0.007739
24	-0-40000	0.977334	0.000866	0.011013	0.000045
25	-0-62500	0-975959	0.002618	0.011790	0.000504
26	-0.45000	0.977957	0 993393	0.011/30	0.009506
27	-0-47500	0.977835	0-993506	0.011304	0.011597
28	- C- 50000	0.978069	0.993129	0.011039	0.012202
29	-0-52500	0.976226	0.992901	0.010781	0.012541
30	-0.55000	0-975379	0.993127	0.010714	0.012341
31	-0.57500	0.975536	0.993506	0.010/14	0.011697
32	-0.60000	0.976085	0.993396	0.010765	0.010544
33	-0.62500	0.976414	0.997473	0.0000237	0.000517
34	-0.65000	0.977127	0 990974	0.000445	0.009517
35	-0.67500	0.978828	0.990314	0.009616	0.008877
36	- C. 70000	0-975965	0.997736	0.009416	0.003740
37	-0-72500	0.976515	0.086534	0.009/14	0.007537
38	-0.75000	0.976165	0.985594	0.000412	0.007611
39	-0.77500	0.977362	0.984873	0.0007455	0.007411
40	-0-80000	0.975486	0.984317	0.000122	0.007307
41	-0.82500	0.977539	0.983895	0.009132	0.007277
42	-0.85000	0.977750	0.983566	0 009647	0 007240
43	-0.87500	0.976966	0.983312	0 010009	0 007255
44	- C- 90000	0.976662	0 943112	0.010363	0.007255
45	-0.92500	0-977518	0. 982951	0.010522	0.007259
46	-0.95000	0.977569	0.982823	0.010681	0 007245
47	- C. 97500	0.977917	0.982719	0.010875	0.007289
48	-1.00000	0 975095	0 0 0 2 4 2 9	0.010825	0.007277
49	-1.02500	0.974355	0.982572	0.011911	0.007289
50	-1.05000	0.976211	0.982511	0.011973	0.007203
51	-1.07500	0.977154	0.982461	0.012270	0 007715
52	-1,10000	0.977636	0.982417	0.012206	0.007315
53	-1-12500	0.977123	0.982179	0.012755	0.007325
54	-1.15000	0.977614	0 997140	0.0120/2	0.0072/2
55	-1.17500	0.976272	0.902340	0.013632	0.007362
56	-1 20000	0 070310	0.003343	9.013037	0.007379
57	-1-22500	0.979210	0.992202	0.013554	9 - 99 7400
58	-1.25000	0.919003	7.757622	0.014002	0.007420
		V. 790132	J. 70210U	0.014/78	0.007442

Figure 71 (Continued)
Figure 72. YCOR data listing for 10⁻⁴-M NaDS in .05-M Na₂SO₄

SURFACTANT CONCENTRATION= 0.00010 - MINAES ELECTROCAPILLARY MAXIMUM IS -0.52500 VOLTS VS. S.C.F. FRUMKIN EXFORENT= 1.50000 ELECTRICAL DESCRPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACE VISCOSITY OF PURE INTERFACE= 0.000500 1/30 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

WAVENUMBER = 45.073022 RECIPROCAL CM.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

DENSITY OF UPPER PHASE D.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE D.CCB94CO VISCOSITY OF LOWER PHASE D.0152700 DRIGINAL CUTPUT VOLTAGE 5.09900000 MV. INITIAL DAMPING COEFFICIENT D.59180 1/CM. MAVELENGTH D.13940 CM. PROBE SEPARATION = 2.16800 CM.

MEASUREMENTS MADE AT MYLD, VAD BECKLESULEOMATE+M/20 MA2S04 / DIME MERCIPM (ATERCACE)).COOLD-M (ADS IN C.CSC-M NA2S04

3.050-9 94250478088 45 19TERFACE---DATA OF G.P.BIERWAGEN(3-13-63)

ANALYSIS OF INTERFACIAL PIPPLE DATA FROM THE POLARIZED HVID, CONDANCE 15

.

C AWP A	174. በበባበባን	176.528900	379.271400	380. 546600	383.304600	386.279711	193.919.91	392.318300	195.201 100	197.918200	400 444 500	402-767500	404.889100	406.817190	408.564600	0066491014	106 986.114	001668 •215				417.91700	418-684500	419.346100	419.916200	420.386700	420.750200	420. 996500	421.116600	421-101300	006076*025	420 457 107 4	419-523100	418-723303	417.756100	416.623700	415.328600	413.875900	412-270900	0011/C*014	406-524000	404.491600	402°246800	399 . A97 407	397.448400	394.901 A0A	392.766100	349. 528300	386.694300	383.769200	380. 731200	000112 7116	170-918200	/
CUITPLI VCLIAGF(MV.)	8°44600	0 L J L J L J L J L J L J L J L J L J L	А.46000	8.27700	7.914000	8.067000	8.173000	8.145000	8. 000000	7.615000	6.984000	6.626000	6.374000	6.1 02 000	000/1/ *4	000188.6		3.0440UU	000147 5	000101-00		5-341000	5 - 2 7 8 0 0 0	5.164000	5.125000	5.049000	5.085000	5.099000	5.139000	5.196000	000275	5. 448000		5.742000	5.911000	6.206000	6.370000	6.394000	6.6H4000		7.07700	7.207000	7.302000	7.44600	7. 376000	7.412000	7.547000	7.631000	7.487000	7. 712000	7 85000	7. A1 7000	7.877000	
FRF QUF NG Y	236.700000	737. 600000	234. 500000	241.10000	243.00000	244- 100000	245.100000	246. 900000	248.100000	246.800000	244 600000	250.000000	250-40000	2010000	000000167	000002 222	000001 22C	000001°667		254 40000	254-20000	254.90000	255.30000	255. 30000	255.20000	255.40000	255. 500000	255 400000	255. 600000	255.60000	000000	2554 40000	255.300000	255-100000	254.90000	254. 700000	254. 200000	254.000000	000000 535	252.50000	251. 90000	251.20000	250.60000	249. 900000	249 . 300000	248.40000	247.800000	246.80000	246. 200000	2455, 100000	000003 6447	242-90000	242.40000	
ריון גאמן דאמר	0.200030	0.1757 <u>0</u> C	2 • 15 Jn 9	0.125700	0.10000	J.0750U0	9.05000 C	0.025900		000520-0-	000040.0-	000410-0-	-0-100000	000621.0-	000021-0+	0 100000			- 0.0000		-0.325000	-0-350000	-0.375000	-0.40000	-0.425000	-0.45000	-0 44 75000	-0.500000	-0.525000	-0.550000	100000 0-		-0.650000	-0.675000	-0.70000	-0.725000	-0.150000	-0.071.0-	-0 635000	-0.85000	-0-875000	000006-0-	-0.925000	-0.950000	-0.0279.	-1. 000000	-1.025000	-1-020000	0006/0*1-	660001°1-	1100001 I-	-1-175000	-1-200000	
٨٥.	1	2	ŕ	2	ŝ	6	7	60 '	~ ·	10	11	12	51	÷.	2:2	0	10	10	02	10	22	23	24	25	26	27	29	29	5.0	16	25	55 75	35	36	37	38	66	0.4	41	1.4	44	45	46	47	48 · ·	64	05	15			t u 1	C	51	

INPUT DATA

Figure 72 (Continued)

•

INITIAL FREQUENCY = 255.40300

POLYNOMIAL COFFE	LOLENTS OF AMPLITUDE CORP.	ert (-
	1,743244115) (5	page conversion
	-) 174- ? 3- 4- > - 5	Far in the set
	(, +++)/-3+)+ * **	FREE STATES
	-C. 535317177eD C5	ERELIENCY## 3
	0.18251559313 5	ESEDDENCARE M
	-0,37334733630 04	FREQUENCY## 3
	0.42360536090 03	FREGUENEY## 5
	-0.20576723557 (2	FREC IENCメキキ・7
	0.0	ESECTEACARR B
	0.0	FREQUENC V## 9
	0.7	EKEIDENCV##10

ΝC.	FREQUENCY	CORRECTED GUTPUT VOLTAGE	Nr.	FREQUENCY	CORRECTED CUTPUT VOLTAGE
1	236.00000).RJ733	29	255.40.000	5.09900
5	237.60000	J. 96344	3.0	255.60000	5.21460
3	239.50000	1.22197	31	255.60000	5.27244
4	241.10000	1.48919	32	265.60000	5.35361
5	243.00000	1.85368	33	255.40000	5.36700
6	244.30300	2.26135	34	255.30000	5.42747
7	245.10000	2.55784	35	255.30000	5,55949
8	246.80000	3.21527	36	255.10000	5.61370
9	248.10000	3.73418	37	254.90000	5.68989
10	248.80000	3+ 88422	38	254.70000	5.87964
11	249.60000	3.93069	39	254.20000	5.74509
12	25C.CCC00	3.91195	40	254.00000	5.71333
13	250.40000	3.94367	41	253.50000	5.71224
L4	251.00000	4.04216	42	252.90000	5.52565
15	251.5COCC	4.03949	43	252.50000	5.41215
16	252.2C00C	4.43508	44	251.90000	5.16827
17	252.70000	4.49125	45	251.20000	4.88130
18	253.1CCCC	4.6471C	46	253.60000	4.62310
19	253.60000	4.88042	47	2.44.90000	4.34470
20	254.00000	4.87965	48	249.30000	4.00255
21	254.40000	4.98463	49	248.40000	3.59478
22	254.70000	5.10845	50	247.80000	3.38009
23	254.90000	5.14121	51	246.80700	3.00499
24	255.30000	5.23888	52	246.20000	2.72076
25	255.30000	5.12572	53	245.10000	2.41357
26	255.20000	5.04984	54	244.20000	2.15759
27	255.40000	5.03900	55	243.50000	1.97061
28	255.50000	5.12250	56	242.90000	1.80574

Figure 72 (Continued)

APPAREXPIL) ALPHARTAN	1.441940 040 0.13135	1.360386 C.313671	1.75073A 0.314540	1.139516 A. 11:978 1 256531 A. 11:478		0.910010 0.314496	0.994500 0.314417	0.735484 0.314840	0.11717 0.314381	0.714452 0.314222 0.714037 0.313245			0.699238 0.315211	0.656145 0.317584	0.651368 n.322242	0.634605 D.33039	n.612009 n.362460	0.012082 0.453217	0.637329	0 587007 0 587007 0 50501	0.579317 0.570312	0.549389 0.554610	0. 596360 0. 544607	0.597705 0.538604	0.589679 0.534743	0. 591800 0. 532296	0.591460 0.531897	0.576372 0.532575	0.534778	0.538418	0.544607 0.552003 0.5544607	0.547443 0.567742	0.541225 0.596152	0.526094 0.641654	0.536772 0.534147	0.539329 0.454828	0.539417 0.363918	U. 734652 U. 734384	0.204100 0.219176 0.2	0.611976 0.317230	0.636993	0.665694 0.315962	0. 703474 0. 316153	0.753037 0.316127	0.780216 0.316584	0.835698 0.316742	0.841530 0.317484	0.936790 0.317807	0.998504 0.318499	NCCFIC.() CICUT().1 CODOCE C C C C C C C C C C C C C C C C C C	
ТНЕТА РРОМ МОЛЕЦ	0. Jn4551	3.117877	1,001348	270200 C	1, 10,44 P4	0 * 1) 164 ag	0.009285	0.013095 0.013032	47/41/° 1	750750°C	0.4045794	0.061045	0.080783	0.L06362	0.135753	0.194052	0.2244525	0.4530424		0.471776	0.728954	0. 766207	0.791244	0.808096	0.818966	0.825076	0.827049	0.825076	0 - 60 60 0 4	0, 701,344	0.766207	0. 728954	0.671774	0.590846	0.451509	0.330424	0.244525	0 1 30763	0.106362	0.080783	0.061045	0.045794	0.034046	0-025052	0.019224	560£10°0	0°00788	U. UU64444	0 00206 B	0 - 00 30 4 2	
044441ExP1.104LC.E=C	153 .4453	304 . 44 964	270.45033 5 5 5 5 5 5	2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	335 . 74 798	388.32330	353. 75908	347.47554 400 30410	61017-2014 01172 207	404°002004	405.27396	407.20123	408.79362	411,08403	412-69047	413.99347	613-62019 414 01351	10514-014	413°71410	5 1 9 2 8 4 6 F 3	421.14813	421.13718	420.80576	421.45735	421.78465	421.45835	422-11772	422.12220	001 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	10101-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1	421 1 7656	420.53377	419.89304	419.26117	417.63727	416.9919	415•3HCBO	212-12073	410.20585	407.94394	406.C0616	403.75032	401.80338	398.89632	40079.49F	97047-565	00100 1140 01000 000	51797°585	07172 - 282 9 2 7 7 1 - 282	381.22683	
P.J. V.J. 746E	0.2103.0	0-17500	1,15001	2012 21 • 1 2 • 10000	0.275.00	c. c5ccc	0.02500			00000-0	- C. 19909	-0.12500	-0.15000	-0.17500	-0.20000	-0, 22500	00052.0-		-0.32500	-0.35000	-0.37500	-0.40000	-0.42500	-0-45000	-0.47500	-0.50000	-0.52500			-0.62500	-0.65000	-0.67500	-C. 70000	-0.72500	-0.75000	-0*11200	-0.83500	-0.85000	-0.87500	-0.90000	-0.92500	-0.95000	-C. 97500	-1-00000	-1.02500	-1-0500			-1-15000	-1-17 500	
• 1C		~	~ ~	7 v	` r	2	nc (ۍ د -	2 =	12	12	14	15	5 1		81	55	210	;;	12	54	25	26	5	58	5	5	1.5		12	. SE	36	37	38	6	2 :	7 3		1	45	46	47	84	6 C		10		1	5.5	56	57

.

Figure 72 (Continued)

·

~

N.J.	PEL.VELINDE	er(fleet)).	4E(F)-470EL	IN(C)=CYC*.	LM(E) - MODEL
ı	2.77002	14.4-1793	-7.11173	12.590341	-2.112566
7).17532	15,4424.5	- 7. 100001	12. 7044.74	-2.221279
3	0.150JA	10.070249	1.000313	12.837947	- 1, 222004
4	2.12500	17.714-77	2. 121451	2.776444	-1.113716
5	2.10000	19.264141	7. 374236	12.132591	-1.114745
	C. 17511	25. 352. 14	0.010353	11,439552	-0.011957
7	0.05000	07.134357	1. 1277.77	12 531739	-2.120022
÷	3.02500	25.513817	1.145498	9,710161	-0.031540
9	-0.0	27. 5-545-	2.095239	6-027149	-9.046279
10	-3.32532	29.496747	0.143654	6.441 - 37	-3.063273
11	-0.05000	29.890554	7.245367	6.242864	-2.091199
12	-0.07500	30.990837	0.386231	9.236577	-0.079934
13	-0.10000	31.537342	0.539065	11.812131	-0.115455
14	-0.12500	32.620131	3.879382	11.871615	-2.130812
15	-0.15000	32.597775	1.296256	12.371881	-0.145044
15	-0.17500	37.351071	1.706186	9.286474	-0.158420
17	- C. 20000	37.350273	2.821580	8.258834	-0.171385
19	-0.22500	40.497017	4.251450	7.643313	-0.194539
19	~0.25030	43.431518	6.623270	2.899378	-0.199529
20	-0.27500	42.536565	10.911345	1.538971	-7.223619
21	-0.30000	42.541393	19.163692	-1.860345	-0.292883
22	-0.32500	43.963309	32.005321	- 4. 477554	-0.510074
23	-C.35000	45.999524	45.187168	-3.878479	-0.913018
24	-0.37500	42.152691	56.611805	-9.205164	-1.433555
25	-C.40C00	45.554739	66.229200	-2.662180	-2.006738
26	-0.42500	49.474555	74.142961	7.078031	-2.575914
27	-0.45000	49.970111	80.370642	4.776396	-3.086504
28	-0.47500	51.037092	84.873397	4.857142	-3.491226
29	-0.50000	51.376895	87.600036	11.798221	-3.751748
30	-0.52500	53.977350	88.515434	4.350706	-3.840486
31	-0.55000	55.974090	97.601443	3.409291	-3.750847
32	-0.57500	57.701757	84.874045	-0.367435	-3.490815
33	-C.60C00	60.472433	80.370642	5.136375	-3.086504
34	-0.62500	62.304313	74.143422	1.519843	-2.575640
35	-0.65000	59.010745	66.229200	-13-425404	-2.006738
36	-0.67500	57.522718	56-611334	-17.785325	-1.433776
37	-0.70000	51.580101	45.197168	-23.854270	-0.913018
38	-0.72500	39.479271	32.005321	- 31.660524	-0.510074
39	-0.75000	49.004303	19.163612	-27.201354	-0.292887
40	-0.77500	34.147553	10.911345	-22.909628	-0.223619
41	-0.80000	34.144295	6.623238	-23.078354	-0.199543
42	-0.82500	38.024745	4.251386	-18.479557	-0.184570
43	-0.85000	31.993529	2.821517	-14.591431	-0.171415
44	-C.87500	31.975855	1.906096	-9.575718	-0.158462
45	-0.90000	32.372284	1.296169	-5.381015	-0.145079
46	-0.92500	29.937901	0.878974	-2.483552	-0.130847
47	- C. 95000	28.547180	0.588940	0.146291	-0.115483
48	-0.97500	25.966486	9.386078	2.196533	-0.098850
49	-1.00000	25.131996	0.244349	4.886488	-0.081189
50	-1.02500	23.378320	0.149515	5.119298	-0.063241
51	-1.05000	22.595909	0.085115	6.900635	-0.044219
52	-1.07500	21.012342	0.045664	7.108923	-0.031513
53	-1-10000	23.446771	0.022707	9.153894	-0.020022
54	-1.12500	19.608066	0.010362	8.530917	-0.011954
> >	-1.15000	18.747781	0.004236	8.445081	-0.006795
56	-1.175CC	17.899265	0.001448	9.290691	-0.003739
57	-1.20000	17.095104	0.000305	8.064948	-0.002027

Figure 72 (Continued)

.

.

Figure 73. YCOR data listing for 2.5 x 10^{-4} -M NaDS in .05-M Na₂SO₄

SURFACTANT CONCENTRATION= C.OCO25-M NADS ELECTRICCAPILLARY MAXIMUM IS -0.55000 VOLTS VS. S.C.E. FRUMKIN EXPINENT= 1.50000 ELECTRICAL DESORPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X P X TEMPERATURF = 13.50000 DIFFUSION TERM= 455.CC SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/80 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

WAVENUMBER = 64.016091 RECIPROCAL CM.

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700 ORIGINAL OUTPUT VOLTAGE 13.4940CCCCC MV. INITIAL DAMPING COEFFICIENT 0.91262 1/CM. WAVELENGTH G.05815 CM. PROBE SEPARATION = 1.39700 CM.

MEASUREMENTS MADE AT 0.00025-MINADS 10.05-MINADSR04 /PURE MERCURY INTERFACE 0.00025-MINADS 0.050-MINADSC4

NADS IN MY20 NA2SE4--HE INTERFACE(TAKEN OF GUBIERWAGEN IN 1-1 HON PRYSP.

ANALYSIS OF INTERFACIAL RIPPL ONTA MEASURED AT THE POLARIZED G. 00025-4

5.4 4 5.7 3.4 2. 4 7.7 1 1 3.6 7. 4 5.0 9 3.7 4. 9 4 7 7 9 3.7 7. 54 9 9 9 9	343.757.07 343.457.07 345.733202 349.739251340 792.51360 395.150100 397.64900 406.0481307 404.64930	406.48001 405.44277 410.066107 411.645500 411.645500 415.491900 415.491900 417.284407 417.284407 417.284407 417.284407	418.793200 418.79610 418.74610 418.74610 418.79610 418.39250 417.45010 417.41520 416.800500 416.800500 416.166.0500 416.316400 415.373500	413.73700 412.846400 411.908800 411.988.400 411.988.400 409.584700 407.700 407.7100 407.7100 407.7100 407.644.00 397.601300 394.6946.00 394.6946.00 394.6946.00 394.6946.00 394.696000 314.900000 376.007000	1.00.01.1.9 045
r'JTPJJ VCLTAGE[4V.] 15.22400 15.60000 15.614000 15.614000 15.952000	15.330000 15.2971000 16.287000 16.287000 15.450000 15.450000 16.729000 16.729000 17.055000 17.055000	16.558000 15.9101000 13.9101000 13.760000 13.12000 13.554000 13.554000 13.554000 13.678000 13.678000	13.62000 13.52000 13.53000 13.53000 13.53000 13.67000 13.67000 13.67000 13.67000 13.630000 13.630000 13.630000 13.630000	13.256000 13.771000 13.771000 13.577000 13.557000 14.457000 14.457000 14.457000 14.777000 14.917000 14.917000 14.917000 14.911000 15.085000 15.085000 13.975000 13.975000	11 DEC 54 • 1 1
FAF CUFLCY 421,310000 421,310000 423,350000 423,450000 423,4700000	424.33000 422.400000 423.400000 427.5400000 427.500000 426.800000 421.100000 431.100000 431.100000 431.30.60000	431.30000 432.80000 432.60000 432.60000 433.40000 433.40000 431.90000 431.90000 432.400000 432.400000 432.400000	432.200000 432.200000 432.900000 432.900000 432.900000 432.900000 432.800000 432.800000 432.900000 432.900000	431.200000 431.200000 431.200000 431.200000 428.500000 428.500000 428.500000 428.500000 428.200000 428.200000 428.200000 428.200000 428.200000 417.400000 417.400000 417.400000 417.400000	
POL. VIL TAR -1.259333 -1.226533 -1.226533 -1.125033 -1.155033	-1.125060 -1.275060 -1.050000 -1.2050000 -1.2050000 -1.205000 -0.975000 -0.975000 -0.975000 -0.290000	-0.875000 -0.850000 -0.800000 -0.800000 -0.75000 -0.75000 -0.55000 -0.65000 -0.65000 -0.65000			00000000
20 20 20 20 20 20 20 20 20 20 20 20 20 2	8 c 8 c 5 3 d 6 4 d	16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222 222 222 225 225 255 255 255 255 255	2 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5	

INPUT JAFA

Figure 73 (Continued)

INITIAL FREQUENCY = 432.10000

PGLYNDMIAL COEFFICIENTS CF AMPLITUDE CCRRFCTICN -0.12086089150 C4 FREUUFNCY** 0 0.29233302350 C4 FREQUENCY** 1 -C.25312538850 C4 FREQUENCY** 1 -0.70461831170 03 FREQUENCY** 3 -0.70461831170 03 FREQUENCY** 4 0.189C8878520 C3 FREQUENCY** 5 -0.34923972600 02 FREQUENCY** 5 0.43859624150 01 FREQUENCY** 7 -C.3586C196920 C0 FREQUENCY** 9 -0.1724379600-01 FREQUENCY** 9 -0.37422996808-03 FREQUENCY** 10

NO.	FREQUENCY	CCRRECTED CUTPUT VOLTAGE	NC.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	420.01000	15.14224	30	432.90000	13.22262
2	419.30000	15.50646	31	432.10000	13.49400
3	42C. 3CCCC	15.74065	32	432.40000	13.71620
4	420.4000C	15.53630	33	433.20000	13.26517
5	423.70000	15.94248	34	432.80000	13.46786
6	424.CCCCC	15.32529	35	431.80000	13.43043
7	422.90000	15.94769	36	432.10000	13.30800
8	423.60000	16.27064	37	432,50000	13.47796
9	426.40000	16.20331	38	432.30000	13.72359
10	427.50000	16-53406	39	430,90000	13.24789
11	426.80CCC	17.16612	40	431.20000	13.17728
12	427.7C00C	16.83705	41	430.50000	13.78647
13	430.70000	16.74599	42	430,00000	13.61039
14	431.1CCCC	16.77694	43	428.60000	13.67406
15	430.60000	17.07326	44	427.80000	13.64889
16	431.30000	16.56853	45	427.30000	14.16064
17	432.8CCCC	15.09076	46	426.20000	14.48178
18	432.60000	13.98338	47	426.80000	14.52425
19	432.60000	13.75349	48	426.70000	14.50173
20	432.40COU	12-00840	49	424.10000	14.47689
21	433.10000	13-1398C	50	423.20000	14.06377
22	432.80000	13.22403	51	423.20000	14.30095
23	431.50000	1 3. 556 34	52	422.80000	14-13069
24	432.40000	13.19935	53	419.70000	14.99289
25	433.1CCGC	13.00993	54	417.40000	14.77121
26	432.90000	13.42889	55	417,70000	14.39371
27	432.00000	13.62119	56	412,80000	13.67557
28	432,4000	13.54825	57	410.30000	12.66103
29	433.2000	13.15829	58	403.90000	11.08563

Figure 73 (Continued)

Fig	50	57		1 UI 1 4	53	52	2 5	49	a	47	46	53	4 J	42	41	40	9E	38	5	2 1		2 U 1	32	31	30	29	20	26	25	24	23	22	20	19	18	17	20	1.4	13	12	-	1.	0 a	• ~	0	ა	r ,	ا بن	د	20.
ure 73	C.2000	0-15000	0.10000	0.07500	0.05000	6. (2500	-0.02500	-0.05000	-0.07500	- C- 10000	-0.12500	-0.15000		-0.22500	-C.25000	-0.27500	-0-30000	-0-32500	-0-35000	-0.40000	-0-42500	-0.45ccc	-0.47500	- a. 5000c	-0.52500	-0-55000		-0.62500	- C. 65000	-0.67500	-0.70000	-0.72500	-0.77500	-0-80000	-J.82500	- 6. 85000	-3.47500	- C. 92500	-0.95000	-0.97500	-1.00000	-1.02503		-1.17303	-1.12500	-1.15000	-1.17500		-1.25000	PCL. VELTASE
(Continued)	366,28145	77800 225 16114 *7R5	391.55831	391.01629	395.29113	401 - 14846	401.79576	403.50139	408.40446	40A, 59444	407-45869	409.52689	01157769134 527169134	414.63321	415.59404	416.90353	416.33377	419-01010	419,2040	418 4204 42290°818	419.57956	420.73780	419 • 223 f A	418.63934	420-16017	420 - 73281	5555+815 55555+815	18,22,017	420.53384	419.20009	418.25924	77846 6174 1446 5 074	419.19154	419.60859	419.61827	420-64413	417 31875 51543 °G18	416.84211	416.07725	410.37210	408-67613	409 49470	407 96361	401,25745	+ 33. 34286	432.79846	70513.48°C		34547303	JANNA (EXPT.)CALC.F=1
	0.0004P5	0.07103	611500°U	0.07553	0.011363	0 01 65 76	0.034128	0.049338	6116 - 0	606560° 0	7.135638	0.105866	0164-45.0	0.457510	0.760932	0. 919560	0.956837	0.982254	0 01020 C	5 0 1 2 C T T T T T T T T T T T T T T T T T T	9.0644	0.936019	0.939874	0.942467	7.943964	0,444452	0.942467	n. 939874	0.0566.0	0.930644	0-92 335 4	0.013557		٦.856837	J. 819560	7,760932	0.468910	1,294123	J. 195846	0°132434	J_095909	0-04030	1 0 C B 3 2 B	5 0Pt 20 °C	1_016575	7,011363	5697 UU C	0.0051 JD	201200	JELLM NÜNE VI
	11. 438224 [.053347	0.00000	0. 366416	0.847885	0 - 8 37222	0.870144	0.893044	U• 862235	0.941045	7.859954	9.862050	19197 - O	151500	0.996472	ŋ.897271	129520	0.925796	0-977110	0.922555	0.916000	0.914008	0.924963	626066 0	0,126,20	1.97167	0,0304248 0,7404°0	0.905904	280916.0	0.93877D	0 • 928966		11156.0	0.939955	0.898985	0.987119	0-31557 140551 °C	J 744210	0.755743	7.759765	2.1413	7-760777	121747	3.7767R	ui(112.1	1.12125	1,92551			9.1 ut e* (1. 147 (22011)
	0•215413 0•2154137	0.505896	0.506957	0.502497	0.501414	966665°C	0. 499516	0.493695	0.502519	0.504492	198645.0	216119-0	0.980409	0.962724	0. R881 59	0.952665	0-830590	0-818555	0. R00495	0.794297	0.791475	0.788763	0.785070	0.782910	0-761126	0.793312	0.792677	7.785670	0.748618	510162°0	0.794845	206016-0	0.820593	0.436011	0.85852	1 2 7 0 0 U	0.7957	1124-0	7.541.3	0.5191;	0-512950	222115 N	7.57934,1	J	ل والالد،	1.515570	.	· · ·		· 1V

NC.	PCL.VELTACE	- ! IFJ- Frot.	2 2 (F) - M) DEL	[V(F)-FXP].	[Y (F) - YODE
1	-1.25000	12.94775)	1.11111	9 555994	-0.002345
2	-1.22500	12.932262	3.001996	9.749149	-7.375424
3	-1,20000	12.919433	1.)15112	8.663108	-0-110557
4	-1.17500	12.450655	1.115359	9.034912	-0,019430
5	-1.15000	13.055555	2.037969	3. 449299	-)-)347 17
5	-1.12500	13.153557).)3)333	8,132682	-0-056443
7	-1.10000	12.995412	0.157795	5.711042	-0-086691
٩	-1.07500	12.925553	0.297163	6- 093903	-7.123855
9	-1.05000	13.108562	2.525321	6-973248	-0.16519P
10	-1.62500	13.066306	0. 897980	4.752357	-0.207838
11	-1.00000	12.731395	1.509626	5.048583	-0.250179
12	- C. 975CO	12.864637	2.56 1422	4.550408	-0.231503
13	-0,95000	13.144063	4.523077	5-200213	-1.332758
14	-0.92500	13.124215	3.892429	5.518938	-0.384558
15	- C. 90000	12.848643	20.407315	3.693763	-0.563592
16	-0.87500	13.194416	42.195563	3-136918	-1-500762
17	-C.850CC	14.179833	63.173451	3.902999	- 3. 443897
18	-0.82500	15.426516	32.039119	2.454647	-6-236751
19	-0.80000	15.316357	99.537337	1.041940	-9.799959
20	-0.77500	18.553242	115.873490	-9.446632	-14-031212
21	-0.75000	19.397227	130, 999999	-0.501842	-18,754598
22	-0.72500	20.431948	144.705682	-2.885088	-23.771845
23	- C. 70CCO	26.821707	155.805683	-8.489072	-28,928334
24	-0.67500	26.986275	167.237228	-6.756359	-33-622382
25	-0.65000	25.035752	175.963124	-5.148918	- 37- 91 81 86
26	-0.62500	28. 262720	182.551928	-9.317050	-41-517617
27	-0.60000	40.067934	187.293486	-10,787079	-44.232092
28	-C.575CO	35,547878	190-196632	-10.418840	-45.896291
29	-0.55000	27,973809	191,210770	-6-861564	-46-444513
30	-0.52500	30.005480	190.231447	-7,721781	-45.885745
31	- C. 5COCC	37-881990	187.300179	-9-965709	-44.779999
32	-0.47500	21, 423541	182. 527010	-10,980705	-41.525924
33	-0.45000	24.082936	175.868745	-5.635610	-37.916207
34	-0,42500	24, 340555	167.256899	-6.662742	-33.614898
35	-0.40000	29.419094	156-801538	-8-803370	-28.830049
36	-0.37500	24.695437	144-692376	-6-270537	-23,782358
37	-0.35000	20.760300	130, 984739	-4-051292	-18.762074
38	-9.32500	20.450793	115.871645	-2.959833	-14-032176
39	- C. 30000	24.401548	99.516602	-5-997495	
40	-0.27500	21-054937	82.027916	-3.460929	
41	-0.25000	20-603607	63.164995	-5.309091	-3 669303
42	-0.22500	20. 779042	42.191719	-4 867631	-1 501364
43	-2.20000	24.686944	20. 406861	-8- 333690	-0 561703
44	-0.17500	25-836617	9.801202	-9 675141	-0.386005
45	-0.15000	22, 952715	4-521860	-0.775964	-0.133374
46	-9.12500	23,482553	7.559913	-12.832302	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -
47	- C. 10000	17-301008	1.509626	-4 550004	-0.250170
48	-0.07500	15.820452	0.857666	-1 360668	-0.200174
49	-0.05000	19.413324	2. 525297	-6 725736	-0 165108
50	-0.02500	18.030167	0.797097	-4-388016	-0.1230/3
51	-0.0	15. 327635	0.159828	-0.150830	-0 094705
52	0.02500	14-632630	0.080735	2. 206468	-0 0562 44
53	6.05000	14-447690	0.017854	-1 287704	-0.036040
54	0.07500	14.660025	0.016338	-1	-0.0107/5
55	6.10000	11 669511	0.006309	3 403040	-0.010-00
56	3-12500	15 682630	2 002200	3.043807	-0.010549
57	1.15000	14 093334	1. 002 009	-0.373729	-1.0115545
58	C- 20000	10	-0.000173	1.445052	-7.702899
~ .		7 1 1 4 1 4 1 3 3 1	-1.011212	1+4244990	-0,000911

Figure 73 (Continued)

10.	PCL.VCLTACE	YL-EXPT.	Y 1- MODEL	Y?-EXPT.	42-4CDEL
1	-1.25000	1. 265642	0 091.074	0.012072	
;	-1 22500	1 048775	0 0 0 1 1 1 0	0.012967	0.007047
5	-1 20000	1+046723	0.961139	0.012702	0.107956
4	-1.17500	1 032556	0.001260	0.0124.14	0.067430
-	-1 15000	1 032750	7.951200	0.012680	9.007906
6	-1-12500	1 012656	0.961300	012392	0.007897
,	-1.10000	1.012935	0.981 397	0.012833	0.007880
0	-1.07500	1.010215	0.981324	0.012388	0.107864
0	-1.07500	1.014323	0.981701	0.012164	0.007861
10	-1.03500	1.020115	0.451943	0.012210	0.007873
10	-1.02000	1.018133	0.982337	0.011984	0.007891
12	-0.07500	1.005032	0.982987	0.011565	0.007927
12	-0.97500	1.005847	0.944093	0.011781	0.008035
1.5	-0.93000	1.013889	0. 489 148	0.011842	0.009369
14	-0.92900	1.010051	0.990530	0.011821	0.009773
14	-0.97500	1.002382	0.987193	0.011625	0.015444
17	-0.87900	1.000684	0.972402	0.011961	0.014989
10	-2.83000	1.003081	0.969862	0.013006	0.013820
10	-0.82500	0.497946	0. 969229	0.013858	0.013251
20	-0.80000	0.994117	0.969000	0.014043	0.012919
20	-0.75000	0.989751	0.968907	0.014666	0.012699
21	-0.79000	0.989857	0-968860	0.014554	0.012548
22	-0.72500	0.985825	0.968850	0.014482	0.012433
23	-0.70000	0.979432	0.968861	0.014205	0.012344
24	-0.87500	0.979176	0.968859	0.014511	0.012283
27	-G. 65CC0	0.981403	0.968857	0.014665	0.012239
26	-0.62500	0.978865	0.968867	0.014310	0.012203
21	-0.60000	0.974441	0.968881	0.014151	0.012175
28	-0.57500	0.975795	0.969879	0.014211	0.012164
29	-0.55000	0.979294	0.968869	0.014538	0.012164
50	-0.52500	0.978147	0.968872	0.014483	0.012167
31	-0.50000	0.975043	0.968878	0.014256	0.012177
32	-0.47500	0.977182	0.968870	0.014073	0.012201
33	-C. 45000	0.981839	0.968856	0.014447	0.012239
34	-0.42500	0.981282	0.968858	0.014278	0.012284
35	-0.40000	0.978194	0.968871	0.014309	0.012340
30	-0.37500	0.981164	0.968875	0.014411	0.012424
31	-0.35000	0.984739	0.968894	0.014269	0.012536
38	-0.32500	0.985715	0.968948	0.014482	0.012685
39	-0.30000	0.981333	0.969077	0.014467	0.012891
40	-0.27500	0.984920	0.969324	0.014522	0.013219
41	-0.25000	0.983878	0.969996	0.014016	0.013777
42	-0.22500	0.984013	0.972586	0.014160	0.014946
43	-0.20000	0.980233	0.987415	0.014108	0.015317
44	-0.17500	0.979461	0.990535	0.014128	0.009665
*2	-0.15000	C. 980 397	0.986250	0.013717	0.008286
46	-0.12500	0.978994	0.984174	0.013466	0.007960
41	-0.10000	0.985923	0.983089	0.013433	0.007855
48	-0.07500	C.99C236	0.982468	0.013451	0.007811
49	-0.05000	0.983590	0.982102	0.013470	0.07784
50	-0.02500	0.985485	0.981859	0.013794	0.007775
21	-0.0-	0.992233	0.981691	0.013607	0.007778
52	G. C250C	0.997672	0.981577	0.013741	0.007787
23	0.05000	0.990636	0.981515	0.013078	0.007790
24	0.07500	0.990051	0.981451	0.013245	0.007809
22	C. 10000	1.002943	7.981370	0.013534	0.007841
56	0-12500	0.991013	0. 981 333	0.014107	0.007857
57	0.15000	0.992240	0.981270	0.014969	0.007888
58	C.2CCC0	0.990907	0.981136	0.016454	0.007957

Figure 73 (Continued)

.

Figure 74. YCOR data listing for 5 x 10^{-4} -M NaDS in .05-M Na₂SO₄

FPUMKIN EXPONENT= 1.50000 FLECTRICAL DESORPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY CF PURE INTERFACE= 0.0000010 SURFACE VISCOSITY CF PURE INTERFACE= 0.0000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/80 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

ELECTROCAPILLARY MAXIMUM IS -0.57500 VOLTS VS. S.C.E.

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

WAVENUMBER = 48.40662C RECIPROCAL CM.

SURFACTANT CONCENTRATION= C.OCO5-M NADS

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400 VISCOSITY OF UPPER PHASE 0.0049400 VISCOSITY OF LOWER PHASE 0.0152700 DRIGINAL DUTPUT VOLTAGE 10.59500000 MV. INITIAL DAMPING COEFFICIENT 0.66257 1/CM. WAVELENGTH 0.12990 CM. PROBE SEPARATION = 1.47300 CM.

NEASUREMENTS MADE AT M/2000 NA DECYLSULFINATE+M/2D NA2SC4 / PUPE MERCURY INTERFACE D. 2005-M NA2S IN D.050-M NA2SCH

NA2504 / PLRE HS INTERFACE: DATA OF GURLERWAGEN (1-11-68) TRYAL

A ALYSIS OF INTERFACIAL RIPPLE DATA FROM THE POLARIZED .0005-4 NADS +.050-4

1	NI I	0	 т	h	٨	T I	٩.
		-					•

ND.	PCL.VCLTAGF	FR EQU ENCY	CUTPUT VOLTAGE(MV.1	GAMMA
1	-1.200000	271.200000	14.203000	370.894500
2	-1.175000	271.500000	14.414000	374.235100
3	-1.150900	273.200000	13.767000	377.481600
4	-1.125000	273.600000	13.707000	380 .6 19 400
5	-1.100000	274.700000	13.945000	383.703600
5	-1.075000	275.300000	13.648000	386.671300
7	-1.050000	276. 500000	13.623000	389.537800
8	-1.025000	277.400000	13.454000	392.291700
9	-1.00000	277. 900000	13.709000	394.924000
10	-0.975000	278.500000	13.584000	397.426700
11	-0.950000	279.500000	13.415000	399.790500
12	-0.925000	280. 200000	12.811000	402.006 300
13	-0.900000	280.400000	13.311000	404.068100
14	-0.875000	280.700000	12.442000	405.969400
15	-0.850000	281.400000	11.994000	407.706000
16	-0.825000	281.400000	11-241000	409.275600
17	-0.800000	281.800000	11.551000	410.677400
19	-0.775000	281.700000	10.939000	411.911600
19	-0.750000	281.900000	10.775000	412.980900
20	-0.725000	281.800000	10.657000	413.888900
21	-0.700000	282.100000	10.555000	414.640600
22	-0.675000	281-500000	10.618000	415.240900
23	-0.650000	282-100000	10.572000	415.698900
24	-0.625000	282.000000	10.562000	416.019700
25	-0.600000	282.100000	10.567000	416.212400
26	-0.575000	281.700000	10.656000	416.284900
21	-0.550000	282.300000	10.611000	416.243800
28	-0.525000	282.000000	10.605000	416.098800
29	-0.500000	282.000000	10.595000	415.854900
30	-0.475000	281 -600000	10.656000	415.518700
31	-0.450000	202.000000	10.673000	415.095700
32	-0.425000	282.000000	10.472000	414.588600
33	-0.400000	281.800000	10.701000	414.000900
34	-0.375000	281.400000	10.722000	413.334200
35	-0.350000	281.800000	10.869000	412.588300
36	-0.325000	281.600000	10.928000	411.760900
37	-0.300000	281.100000	11.151000	410.851000
38	-0.275000	280.700000	11.263000	409.854400
39	-0.250000	279.500000	11.521000	409.767000
40	-0.225000	279.200000	11.513000	407.585200
41	-0.200000	279.600000	11.831000	406.303900
62	-0.175000	278.900000	11.818000	404.919600
43	-0.150000	278.200000	11.960000	403.429400
5949 1. C	-0.125000	277.700000	12.183000	401.832500
47	-0.100000	277. 100000	12.067000	400.132500
*D 4.7	-0.075000	276.900000	12.293000	398.334200
	-0.050000	276. 300 000	12.251000	396.449200
40	-0.025000	275.100000	12.470000	394.494300
50	-0.0	274.800000	12.365000	391.200000
50 E1	0.02000	273.900000	12.621000	398.200000
24	0.030000	272.700000	13,052000	385.500000
76 51	0.075000	271.500000	13.145000	382.000000
55	0.135000	269-900000	13.951000	378.000000
56	0.150000	268.000000	15.345000	373.500000
54	0. 200000	265.900000	17.159000	368.500000
	0./00000	252. 100000	17.715000	357.000000

Figure 74 (Continued)

INITIAL FREJUENCY = 232.00000

			•	İ.	
12 • AB 326	262.70000	56	10.60500	282.00000	28
13.27098	265.90000	55	10.66491	282.30000	2
12.25094	268.00000	54	10.60166	281.70000	3
11.42981	269-80000	53	10.984.00	282-10000	1
11.04015	271-50000	52	10.295.00	792 10000	
11.16296	272.70000	15	16685.01	00001-282	2
10.999Z8	273.90000	50	10.52810	281-2000	22
26556*01	274.80000	67	19.57288	282.10000	21
11.09115	2.75 .1 0000	48	10.62090	281.ACCC0	20
11.10669	276-30000	47	10.75675	281.9000	5
11.25884	276.90000	46	E 66 842 ° 01	281.70000	81
11.70447	277.70000	45	11.51187	281.80000	17
11.31218	277.70000	**	11.12680	281-40000	16
11-20136	278.20000	43	11.87215	281.40000	15
11.20341	278 90000	42	12.16847	280.70000	14
11. 35279	279.60000	41	12-95115	280.40000	13
10.97123	279.20000	40	12.37871	280.00000	ົລ
11.07616	279.50000	66	12.85045	275.50000	Ξ
11.01539	280-70000	38	12.78859	278.50000	10
10,98114	281 -1 0000	37	12.75105	277-8C00C	¢
10.85397	281-60000	36	12.42805	277.40000	8
10.93218	281.80000	35	12.39239	276.50000	-
10 • 6 1 30 7	281 40000	34	12.16804	275-3000	0
10.66475	281-80000	33	12.31095	274.70000	თ
10.47299	282.00000	32	11.99976	273 .60000	÷
10.67300	282 00000	16	11.86616	273-20000	u,
10.58381	281.60000	30	12.10596	271.50000	2
10 - 59 500	292 •00000	53	11.87580	271.20000	-
CORPECTED DUTPUT VOLTAGE	FR EQU ENCY	CLTAGE NC.	CORRECTED CUTPUT VO	FREQUENCY	40.
			:		
		FREQUENCY##10	C		
		FREDIJENCY ** 9	0.0		
		FREQUENC V++ R	0.0		
		FRFDUENCY ** 7	-0.20575723560 C2		
		FREQUENCY ## 5	0.42363536399 03		
		FREQUENCY## 5	-C.37334703682 04		
		FREQUENCY ** 4	0.18261569010 05		
		FREQUENCY## 3	-1.5353771773D C5		
		FRECUENCY** 2	C. 54076142CED C5		
		FAEOUEVCY ++ 1	-0. 11744216360 05		
		FREQUENCY## 0	3.38304900500 05		
		APECTION	ENTS OF AMPLITUDE CC:	UMIAL CJEFFICIA	P DL YN

Figure 74 (Continued)

•

PCL.VCLT45E	203 70760			
-1.14600	70703°646		201245°C	1919510 0 115150
	1314	1, 25 20 °C	440714°C	10546540
-1-12500	350.4504	0-05030 0-050351	1 + 20 - 20 - 20	0.24420 0.356331
00061-1-	393.50966	0.073711	9. 5606 64	0.156626
-1.07503	355.19358	r72801.0	0.548591	0.360074
-1.05003	394.59537	ý.16251g	9.556189	197076.0
-1.02503	401.15038 2012	0.254566	0.554237	0.414692
000001-	70406 907	10102400	0 53635	26202020
		143003 °U	5/2415°L	(COCA4.0)
-0.92500	408-57107	E 1 2 5 7 8 7 0		161610-0
-000000	19697 - 909	0.883102	0.526248	0.579438
-0.87500	410.57147	0.908299	0.568567	0. 570702
-0.85000	412.57191	n. 925916	0.595304	0.565172
-0.82500	412.53046	0.938650	0.629322	0.560066
- 0. 80000	413.70636	0.94A071	n.696225	0.556758
-0-11500	613-37399	0. 9551 53	0.650571	0.553448
-1, 75050	413444134	0.960529	0.652284	0.551278
00527-0-	1/100-614	0.964677	0.660912	0.549128
	20212414	0. 40173H	0.6653489	0.548057
-6-65060	414.51579	0.071753	700079 U	
-0-62500	414-27505	0.972896	0.666688	0.545101
- C. 6CC00	414.51544	0.973558	0.663218	0.544997
-0.57500	413.36190	0.973775	0.662131	0-544218
-0.55000	415.09882	0.973558	0.658105	0.545289
-0-52500	414.22799	0.972896	0.661930	0.545122
-0.50000	414.22731	0° 971753	0.662570	0.545668
-0.47500	413.07226	0.970066	0.663287	0.545801
	414.23251	0.957738	0.657590	0.547498
	2011201414 212 AF242	0 040530	0.66115	0 5568846
-0.37500	34457 44770	0.955153	C 1 10CD */	22264640
-0.35000	413.66565	0-948071	0-647540	0.555077
-0.32500	413.09008	0.939650	0.646176	0.558208
-0.30000	411.65745	0.925916	0.638268	0.561878
-0.27500	410.50886	0.908299	0.636154	0.567750
-0-25000	407-06775	0.883102	9 .634875	0.573676
-0-22200	406-20549	0. 845213	0.638881	0.586045
	401.451260	0.783380	0.615672	0.609373
005110-	405.36196	0.666667	0.624663	0.659583
	1 2 4 4 5 1 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5	104444	0.624748	0.657100
	CU/ 46 = 104	006467*0	CU1810.U	0. 405041
	20164 ° 106	\$16201=C	0044/9*1	9 - 364 369
	24210+142		(10120°N	PC85C6 -1-
	23663 905 73663 905	11/01/01		0 512510
	C10C7. FPF		201126°N	
0.02500	391.19488	0.023270	0-637147	0.347562
05000	387 . 844 84	0.015630	91126 9-6	0.347499
0.07500	384.49318	0.010385	0.634629	0. 344716
C.10000	379. PCC85	0.005815	0.611091	0.348845
0-12500	374.89023	9-004414	A. 5639RZ	9.343832
C. 15000	369.17413	0.007819	0.509697	n. 350968
0.20000	16522.015		0 6 10015	

.

Figure 74 (Continued)

Figure
74
(Continued)

2 2 2 2 2 2 2	5	52	23	50	4 8	1	46	4 5	\$ 1	t i i	41	5	39	38	37	5		يں <u>:</u>	32	31	30	29	24	26	25	24	23	22	20	19	18	16	15	5			10	م	3	7	σ,	л -	r .	. 1.		40. PC	
0.1250C C.15000 0.20000	0.10000	0.07500	0.05000	0.07500	-0.02500	-0-05000	-0.07500	-0.10000	-0.12500	-0-15000	-0.17500	-0.22500	-0.25000	-0.27500	-0.30000	-0.32500	-0.37500	- C. 40000	-0.42500	-0-45000	-0.47500	-0.50000	-0-52500	-0.57500	- 0. 60000	-0.62500	-0.65000	-0.67500	-0.72500	- C. 75000	-0.77500	-0-80000	-0.85000	-0.87500	00000	-0-93500	-0.97500	-1.00000	-1.02500	-1-05000	-1.07509	-1-10000	-1.12500 -1.12500	-1.15000	-1-20000	IL.VOLTAGE	
46=424237 *********	43-160107	33.808363	35-316020	29.801093	59.072259	45-057349	48.758636	41.705310	65.034231	960 595 - 19	53.325101	49.936204	47.858092	52.293912	50.300364	42 - 01 5832	47.839433	49.396723	46.340807	48.726482	39.317142	44.343797	47.611888 43.070887	36.548759	43.887879	43.105501	46-394556	38_88127	48.628416	45.774167	42.279631	28.733666	18-064708	16.688393	11.203456	11.630062	11-692451	11.714037	12.335242	12.234013	12.696851	12-158414	12.77159	13 374444	12.032426	0F(E)-EXPT.	
0.002010 9.000640 -0.000014	0-005492	0.013977	0.033194	0-076007	0.353664	0.724435	1.454012	2.949736	006 444 900	17-246583	63-595970	80.937181	95.015590	106-399929	115-322712	1 7 2 1 9 2 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	131.04485	133.853178	135.861290	137.265398	138-169853	138-920952	139.658985	139-609653	1 39 . 61 73 04	139.352676	138.941329	11140701511	135.824266	133.870637	131.093305	122-110262	115-35371e	826666 •901	95-065882	63.594278	41.731395	17.745919	906599°	2. 948315	1.452514	7 771370	570155 U	2 1 1 1 2 2 4	511261 .	RE(# }-40DEL	
-62.700689 -53.195930 -20.886845	-21.433721	-13-215631	-14-888040	729127 11	7-199651	-11.397049	-13.313481	- 14- 019344	4.116060	R_ 266007	-1 151730	25.735275	29.183595	-2.071150	3-255940	RG1864 5	16. 360052	11.426205	11.528621	16.728307	26.669775	22-501065	19.272763	28-189883	22.835553	23.257772	19.090743	74 184350	10.297085	-1.905124		-11.263107	-10.495624	-12.59259R	-8-731187	-7.811714	- 4. 947932	-3.710964	-0.949073	-0.618790	-1-2446993 -10-244460	0.442786	0 502820 2 5 7 8 4 6 1	1.137869	3 . 3 2 7 2 5 2	[#(F)_FXPT.	
-0.003255	£56900° G-	-0.14565	-0-0-04497	-0.103400	-0.176442	-0.277432	-0.403009	-0-542744	-0-6848495	CC1000000	-8.162716	-15.290574	-23.710959	-32-756038	-41-853693 00161600-	-58.424009	-65.391155	-71.384714	-76.400067	-80.480631	-93-675391	-84-126716	-88.835048	-89.118103	-88.819831	- 87.816232	6294441°98-	270077 20- 241084*08-	-76 .390905	-71.388223	-65-398215	-50.514957	-41.851204	-32.756039	865909 - 66 - 04461 20 61 -	-15 770444	-3.059549	-0.942250	-0.684619	-0.543290	-0-403704		-0,174318	-0-056944	6156ZL° U-	Buun-(JN)	

.

.07	POL.VOLTAGE	YL-Ê XP I.	v1+vCJEL	Y2-FXPT.	フョロレカーご ۸
	C 0002 -1 -	+44200.1	363269.[0.012087	0° 0372 54
~	-1.17500	0.996175	3.432692	814110-0	52706.0
ŕ	-1.15007	2100001	3.962199	0.012098	0.077750
4	-1.12503	0.994025	1,933319	9.012072	0. 107269
ŝ	-1.10660	C.994612	9C4686 "C	0.011582	708700.0
¢	-1.07530	91810e°0	7.94151	0.011746	9. JC7346
1	-1.05000	0.992617	1.75716	0-0110-0	9.9076CB
T.	-1.02500	0.992076	7.983347	0.011450	n.)18522
σ	C0000*1-	0.988307	191686°C	0.011090	0.013792
9	-0.97500	C. 937039	2.973804	0.011049	119610.0
11	-0.95000	2428820	E10170.C	0-0104H	0.012582
21:	-0.92500	0.986334	1921541	0-011505	0.012127
	00006-0-	0.484107	0.971443	1/10/0	J.111859
* •	-0.487500	0.491595	0.971426	0, 011746	062110.
2:	00068-0-	667786*0	0.971451	190210.0	5.011584
9:				100510-0	0 - 01 1444
- 0				0+012224	0.011429
		046476-0	2 1 2 1 7 4 ° L		2/ 2110 ° U
5		0415140 0	0 0 7 1 5 2 0		
22			0.071575		2061
:	-0-67500	0.965156	0.971603	1101010	
::	-0-65000	0.968207	101120-0		
40					
1 1		C1 102 400 - 0	C101/400	101210-0	767110°0
2			01011400 9691200	101610 0	
2		1124020	02011400	0 013606	
		11000.00	0.071415	265570°C	162110.0
	- 6-50000	0.967158	0.971608	10010-0	462110 °O
06	-0.47500	0-965196	0-971607	0-013702	55211070
31	-0.45000	0.968927	0.971588	0-013585	0.111274
32	-0.42500	C. 970112	J.971574	0.013851	0.011297
2	-0**0000	111026-0	0.971562	0.013596	0.011325
4 m	-0-37500	0.968920	9.971553	0.013664	0.011360
5	-0-35000	0.973433	0. 971528	116610.0	0.011412
\$			0101760	6461040 .	0.011474
		660716°C	515174°U	0.013186	9.011554
0 0		0.944640	0 011500		000110-0
; ;	-0-22500	0.967283	971706	61161A *A	720110-0
	-0.2000	0.973115	0.972096	0.012719	
42	-0.17500	0.971559	0.974063	0-012905	0.013580
6 H	-0-15000	0.970259	9.989505	0 *01 290 T	0.01000
; ;	-0-12500	0.970616	9.999344	0.012769	0.304406
<u>.</u>	-0-1000	0.914140	0*642	£06210*0	0.007523
	-0.500	10614.0	0. 9842 72	0.012835	0.007306
		204010	0.001.00	0-013026	0.031220
007			261696.0	960510-0	511106°G
	0.02500	101110 U	0 000000	0 012100	
		0 076434	10030700 2012020	0,012055	201200°6
;;		7 7 7 7 7 0 V	0 087 320 U	011E10 0	
:5	C- 10000	0,97394.7	0.98260		
1	0.12500	C.972568	0. 982641	199110-0	0.007019
55	0.15000	0.970376	0.992588	0-010529	0-007245
56	0.20000	0.977671	7.982445	0.010945	715700-0
		•	6 • •		

Figure 74 (Continued)

?

Figure 75. YCOR data listing for 10^{-3} -M NaDS in .95-M Na₂SO₄

SURFACTANT CONCENTRATION= 0.0010-M NACS ELECTROCAPILLARY MAXIMUM IS -0.57500 VOLTS VS. S.C.E. FRUMKIN EXFONENT= 1.50000 ELECTRICAL DESCRPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY OF PURE INTERFACE= 0.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/30 = FRUMEIN CONCENTRATION CONSTANT= 0.000250

INPUT DAT & FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

WAVENUMBER = 49.010759 RECIPROCAL CM.

PROBE SEPARATION = 2.13000 CM.

WAVELENGTH C.12820 CM.

INITIAL DAMPING COEFFICIENT 0.69952 1/CM.

DREGINAL CUTPUT VOLTAGE 6.478000CC MV.

VISCUSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.53400

HEASUREMENTS MADE AT MALOOD NA DECYLSILECHATE+MAND NARSDH / PLRE MERCURY INTERFACE D.DDID-M NADS IN C.050-M NARSCH

NARSOA / PURE HS INTERFACE: DATA OF GURTERWAGEN (1-16-68) TRY 42

ANALYSIS OF INTERFACTAL FIRELE SATA FROM THE POLAPIZED MADS 10 0.050-M

INPUT DATA

NC.	PUL .VOL TAGE	FREQUENCY	CUTPUT VOLTAGE (PV.)	GAMMA
1	-1.200000	276.800000	8-293000	370 968700
2	-1.1750GC	277.400000	7.866000	374.175700
3	-1.150000	278.70000	7.912000	377 542900
4	-1.125000	279.600000	7.689000	380. 632800
5	-1.100000	290. 500000	7.963000	383.777300
6	-1.075000	280.90000	7.682000	386 969200
7	-1.050000	291,500000	7-622000	389. 574200
8	-1.025000	281.900000	7.604000	392.230400
9	-1.000030	252.600000	7.419000	396. 7666.00
10	-0.975000	282.200000	6-220000	396.968500
11	-0.950000	283.000000	6.292000	399,079800
12	-0.925000	283.000000	6-801000	400. 931 900
13	-0.900000	283.100000	6-268000	607-690600
14	-0.875000	282.60000	6-112000	404.231900
15	-0.050000	283.500000	6-196000	405-598100
16	-0.825000	283.500000	6-672000	406.816600
17	-0.800000	283.500000	6-274000	407.891600
18	-0.775000	283.200000	5-947000	408. 917800
[9	-0.750000	283.900000	6.330000	409-614700
20	-0.725000	284.000000	6. 916000	410-266800
21	-0.700000	283.900000	6.300000	410-806800
22	-0.675000	283.400000	6.178000	411-231600
23	-0.650000	284.400000	6.448000	411, 540500
24	-0.625000	284.200000	6.947000	411, 746000
25	-0.600000	284.200000	6.450000	411-858100
26	-0.575000	283.500000	6.003000	411-880300
27	-0.550000	284.800000	6.434000	411.820800
28	-0.525000	284.600000	6.417000	411.688700
29	-0.500000	284.200000	6.478000	411.491200
30	-0.475000	283.40000	6.205000	411,232400
31	-0+450000	284.700000	6.537000	410.916207
32	-C. 425000	284.700000	6.415000	410, 542900
33	-0.400000	284.000000	6.452000	410,107900
34	-0.375000	283.500000	6.214000	409.605200
35	-0.350000	284.700000	6.689000	409.026800
36	-0.325000	284.500000	6.740000	408.362000
37	-0.300000	284.000000	6.632000	407.597900
38	-0.275000	283.500000	6.541000	406.725000
39	-0.250000	284.100000	7.289000	405.735800
40	-0.225000	283.900000	7.560000	404.676200
41	-0.200000	283.600000	7.643000	403.397400
42	-0.175000	282.900000	7.568000	402.058500
43	-0.150000	252.600000	7.925000	400.620300
••	-0.125000	282.100000	7.903000	399.09R300
45	-0.100000	282.000000	7.946000	397.499200
40	-0.075000	281.00000	7.725000	395.815100
• /	-0.050000	240.40000	7.919000	394.003400
T O	-0.025000	280.200000	7.814000	391.963100
5 0	-0.0	279.800000	7.846000	389.499700
50	9.025000	279-300000	7.915000	386.850707
71	0.050000	277.500000	8.237000	383.950000
76	0.075000	276.30000	8.420000	381.000000
73 54	0.100000	275.800000	f. 629000	377.500000
)7 85	0.125000	274.400000	8-916000	373.500000
55	0.150000	273. 200000	9.007000	368.250000
30	0. 200000	269.00000	9.517000	356.500000

Figure 75 (Continued)

.

....

IN[TIAL FRE CUENCY = 284.20000

.

Figure 75 (Continued)

ALPHA (MODEL)	0.362733	n. 162541	1.364481	0.367316	089181 .0	n.464919	0. 71 8925	0.447249	10220200	0.597074	189885.0	69618C-0	0 573354		0.558238	0.566231	0. 554104	0.563939	0.563948	0. 562038	0.560562	0. 561 736	0* 561089	116095"0	C174CC-0	102 102 10	0-561451	0-560561	0-563260	0. 563956	0.563659	0. 563891	0. 567198	0.50503	221406°N	0.575892	0.580042	0.585707	0.593511	0. 607670	0.636295	0. 71 081 6	0 0000000000000000000000000000000000000	224011*0	125 105 m	0.354770	0- 354484	0.354497	7. 756027	0-357091	0.359148
AL PHA (FYDTL)	0.642705	1012930	9.455433	7. 555523	0.631769	3.546209	0.644253	0.442964	04184940	C014C1 C	514771°D	275555 - 0 257557 - 0	121027 0	0.725757	0.69100	0.719994	0. 747333	9.712647	0.670320	0.714878	0.727894	26 100 / *0	1000010	44410/ C	*100F/*0	0.700956	0.699520	0.725847	0.691512	0.700357	0.702924	0.724395	0.680720		0 700318	0.644899	0.629281	0.626450	0.636503	0.617214	0.622470	0.620717	216149-0	0.643077	0.664405	9.652506	0.640764	0.639552	0.631986	5442 9° 0	1.628428 0.424085
THE TA FROM WODEL	0.032308	0 •049945	0°074194	0.113648	0.179295	0. 304928	0.564534	0.752744	407100 O	0 01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011414'D	101870-U	0.458370	0.965716	0.971215	0, 975389	0.978586	0.981046	0.982941	0.994391	0.945482	0 2022 0	018984.0	0, 45113U	0.5104.00	0.986816	0.996276	0.985482	0.984391	0.982941	0.981046	0.978586	0.975389	0,911213 0,946712	0.058170	0.448396	0.934544	0.914716	0.885093	0.837784	0. 752734	0.564534	556405°D	0, 113628 0 113628	0.074198	0-048945	0.032308	0.021222	0+013822	0.008407	0.005669
GAV4A(FXPT。)CALC.F=J	334.93409	3 2 4 5 5 8 3 1	390.13263	342 .61194	395.12169	395.93913	591 • 55 J 20	358°71828	61166°006	14001 107	1004°104	402 35 854	400.84515	19275-202	403 41161	403 . 38025	402.51030	404°5C789	404 .8 130 2	404 50543	19160-107	87674°CN4 1 6404 307	101403403404	403,350 f	31855°507 14870 - 207	406.48305	405 · 36299	403° 09392	406.77488	4C6.76535	404 - 79865	403 37520	4000 73483	200224004		405-13862	404.59300	403, 75558	401 .78945	400.97017	399.57212	544 • 24356	100 001 000 000 000 000 000 000 000 000	1476476	393.17456	389 .03594	386. P5312	333.57419	382 • 21862	40174°816	144 60 578 143 03143
PJL VCL TAGE	-1.23007	-1.17500	-1.15000	-1.12503	-1-10000	-1-07500	-1- 52000	-1.00000					-0.87507	-C. 85000	-0.92500	-0.9000	-0.77500	-C. 75000	-0.72500	- C. 70000	00210-0-					-0.52500	- 0. 50000	-0.47500	-0.45000	-0.42500	-0**000	-0*37500	-0.35500			-0.25000	-0-22566	-0.20000	-0.17500	-0-12000	-0.12500				-0-0	0.02500	C. C5CCO	0.07500	0-10020	10021 0	00051-0
4G.	-	~	m	4	Ś	• ه		m c		2 =	:-	:=	12	12	16	17	18	6	2	53	2:	33		; x	32	28	62	30	31	26	2	*	۲ ۲ ۲			66	04	14	4	;				- 8	64	50	51	25	5		

Figure 75 (Continued)

Figure 75 (Continued)

56	5	54	53	52	51	50	6 4		5	5	\$	4 3	42	:	5	90	بن 80	37	<u>ب</u>			25	31	30	29	28	27	26	25	¥:	5.5	32	20	61	18	17	16	5	20	: 2	;=	10	9	39	7	.	л.	~ ~	* 2		<u>۲</u>
0.20000	0-15000	0.12500	C. 10000	0.07500	0.05000	0.02500		-0-05000	-0.07500	- 0. 10000	-0.12500	-C.15000	-C.17500	-0.20000	- 3. 22500	-0.25000	-0.27500	-0-0000	-0-32500	-0.35000		-0.42500	- C. 45000	-0-47500	-0.50000	-0.52500	-0.55000	-0.57500	-0-60000	-0.62500	-0.65000	-0.47500	-0.72500	-0.75000	-0.77500	-0-80000	-0-82500	- 0- 85000	-0-87500	- 22200	-0.95000	- 0.97500	-1.00000	-1.02500	-1.05000	-1-07500	-1.1000	-1-10500	-1.17500	-1.20000	PCL.VOLTAGE
13.935768	15.259571	18.044937	19.171325	31.649949	29.046812	35-575213	74.407.247	38-474910	53.506431	40.528311	63.100392	67-444413	61.460827	62.058247	64.054107	57-237575	32-954136	36-208285	40.451201	23.015005	25.81788.3	31.403809	30.048435	20.366073	23.695566	26-290614	27.716342	20-110543	22-910609	22.363805	0240401 024646°07	23.458803 23.458803	24 843000	26.430375	23.545746	28.083438	32 906773	25,557020 1207050	19/900.65	41.166594	29 523383	29.578278	17.983397	17.165965	15.247385	14-750887	11.405454	13.318234	13.348097	12.703642	RE(F)-EXPT.
0-070149	0.001797	0.004985	0.013033	0.032824	0- 030915	0-196743	J 96461+1	068168*2	8.133663	27.309944	50-292692	63.409195	70.501395	74.099968	75-656841	76-117965	75-941283	75-649595	75_270010	14.320787	74-036440	73.831012	73.592971	73.241800	73.200556	73.152988	73.118165	72.933353	20120101	73,102459		626165*22	73.742680	74.023834	74.283047	74.729227	75-155440	75-598860	75 835083	75-564354	74.046598	70.452530	63.408195	50-265265	27-307307	201101	4 6 E 1 6 B C	1 1 5 4 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.1954 AI	728660.0	2 m (E) - MODF L
-2.053001	- 4. 2702 59	-8.199287	-8-506592	-14-152449		1 - 2 C C] • N] -	-12.870986	- 15.679507	-4.972049	-19-986083	-7-804752	-7.247674	9.753800	-4-42641	999596*6	14 190870	012644052	25.005318	24.641571	24-555564	26-215998	26.039776	27.226800	23-546303	26.060866	26.426318	26.714656	22-876858	25. 705405	20+318844 27-774477	23.476244	25.071723	28.573116	25.539245	23.354140	24.848558	26.5876551	C + U 1 4 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.402482	0.005515	-1.384429	-0-280332	- 3. 959245	-3.618312	-0-702188	445605 • 7	1 54820° C	* (100 × 100	3.355126	4.232137	1 M (F) -FXP T.
615000*0-	-0-002665	-0-006074	0.013700		10+C1+C	841202•0-	-0-480617	-0. RN3677	-1-210399	-2.701957	-9.65R025	-19.116459	- 28- 362729	-36-366-593	-42.848059	C 2 2 C 0 C 7 C - C - C - C - C - C - C - C - C -			-59-181161	-60.486392	-61.613728	-62.515897	-63.162398	-63.527153	-63.957183	-64.237574	-64.396102		370041-40-	-63.976462	-63-527153	-63.088055	-62.452691	-61.605028	-60.461535	-59-048389	121244 446		-47.942350	- 42. 844318	-36-357365	- 28 - 36319A	-19-116459	89504976	-2.703495	151508-0-	10-4-07-4-7 FPC084-0-0	-9.262590	-0.133800	-0.064971	IM(E)-MCDEL

73-HuiDEr	7+2410.0 716700.0 362700.0 762700.0 762600.0 762600.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 772200.0 7720000.0000000000	0.012989 0.011219 0.011219 0.011918 0.011918 0.0111619 0.0111654 0.0111654	10,000 10,000	0.011471 0.011477 0.011477 0.011579 0.011579 0.011579 0.011579 0.011579 0.011579 0.011579 0.011754 0.011754 0.011754 0.011755 0.011755 0.0112952 0.012069	0,007579 0,007577 0,007272 0,007225 0,007225 0,007215 0,07217 0,07274 0,07778 0,07778 0,07778 0,07778 0,07778 0,07778
42-f XPT.	411616.0 11352 11352 11352 11352 11195 11195 11195 11195 11195	0.013119 0.014778 0.014778 0.014778 0.014780 1.014780 0.014999 0.014099 0.014099	0.01526 0.01526 0.014541 0.014586 0.014586 0.014852 0.014852 0.014852 0.014852 0.014852 0.014810 0.014810	0.014302 0.014277 0.014277 0.0142109 0.0142409 0.0143499 0.013499 0.013499 0.013499 0.013782 0.012793 0.012793 0.012793 0.012793	0.012894 0.013121 0.013124 0.013148 0.013049 0.012805 0.012807 0.012807 0.012802 0.012802
V I-479EL	0, 997578 0, 992230 0, 993210 0, 993715 0, 993715 0, 9907153 0, 9700115	0.972970 0.972381 0.972383 0.972383 0.972383 0.972383 0.972383 0.972393 0.972393 0.97239 0.97239 0.97239 0.97239	0.972617 0.972614 0.972648 0.972668 0.972698 0.972698 0.972698 0.972698 0.972698	0, 972685 0, 972685 0, 972692 0, 972692 0, 97265 0, 97275 0, 97265 0, 97275 0, 972755 0, 972755 0, 972755 0, 9727550 0, 9727550 0, 9727500000000000	0.98524 0.98524 0.983845 0.983845 0.98268 0.982688 0.982688 0.982687 0.982571 0.982571 0.982570 0.982570
Y1-EXPT.	1.006412 1.002117 1.002510 1.002804 0.999904 0.999169	0.986555 0.985845 0.977550 0.977550 0.977899 0.977899 0.95586 0.962708 0.965586 0.965586 0.965586	0.995995 0.995995 0.956036 0.956036 0.951687 0.951687 0.955612 0.955612	0,956469 0,956464 0,956464 0,951175 0,951175 0,95201175 0,95201175 0,95201175 0,95201175 0,9520170 0,95090 0,95090 0,971347 0,971341 0,971341 0,971341	0.975159 0.975159 0.9759421 0.977310 0.977310 0.977310 0.981867 0.986197 0.986197 0.989058
PCL.VCLTAGE	00050 00050 00050 00051 1 1 00050 1 1 1 00050 1 1 1 00050 1 1 1 1 1 1 1 1 1 1 1 1 1	00550 00550 00552 00000 00552 00000 00552 00000 00552 00000 00552 00000 00000 00000 00000 00000 00000 0000	-0-17500 -175000 -175000 -1750000 -175000 -175000 -175000 -1750000 -1750000 -1750000 -175000000000000000000000000000000000000		
۲Ç.		2555552°°	282222222222	*********	14445599998856 2786059999999

.

Figure 75 (Continued)

.

.

Figure 76. YCOR data listing for 2.5 x 10^{-3} -M NaDS in .05-M Na₂SO₄

SURFACTANT CENCENTRATION= 0.0025-M NACS ELECTROCAPILLARY MAXIMUM IS -0.60000 VCLTS VS. S.C.E. FRUMKIN EXPENENT= 1.50000 ELECTRICAL DESCRPTION EXPONENT = 12.50000 MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000 DIFFUSION TERM= 455.00 SURFACE VISCOSITY OF PURE INTERFACE= C.000010 SURFACTANT SURFACE VISCOSITY= 0.000500 1/30 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

INPUT DATA FOR MODELED BEHAVIOR: MODIFIED FRUMKIN ISOTHERM

.

WAVENUMBER = 72.220452 RECIPROCAL CM.

the measure of the second second

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13-53400 VISCOSITY OF UPPER PLASE 0.0039400 VISCOSITY OF LOWER PHASE 0.0152700 DRIJINAL CUTPUT VOLTAGE 7.45200000 MV. INITIAL DAMPING COEFFICIENT 1.40000 1/CM. WAVELENGTH 0.08700 CM. PROBE SEPARATION = 1.404CC CM.

REASUREMENTS MADE AT MY400 NA GEORUSULEEKATERMY20 NA2304 - / - P.RE.MERCURY TYTESSAGE 0.0025-4 NADS IN 0.050-4 NA0S04

NACSON / PURE HO INTERFACE: DATA DE GLATERWAGEN (1-22-68) TRYEL

ANALYSES OF ENTERFACTAL REPORT PATA FROM THE POLARTZED M/400 - MARS IN 0.050-M

40 .	PCL. VCLT466	FREUENCY	PUTRUT VELIAGELMV.)	5 M W 2
1	-1.259330	4 94. 010000	4.°08000	364.941990
2	-1.225079	494.50000	5 ° L 54000	367.794400
	-1.20000	496.10000	3, 44600	171-319500
t	-1.175030	499.60000	4.641000	002529 925
5	-1.150000	000001-664	8, 426000	111100
•	-1.175030	4 99.4 40000	1,807000	380.590000
	-1.100000	444,200000	7,650000	343.265400
וסב	-1.075070	499 . 20000	7.239000	385.747300
fr (-1.650030	500,00000	7 .71 ACOO	388.038300
1	000200 1-	500. 100000	7.212000	390.149600
11	-0.875000	500 - 500000 500 - 500000	7.152000	392. 086600
		500.30000	2.148000	106/48°666
41	- C. 425000		7.215000	007020 90E
5	000000-	501-40000	7.230000	398 . 251 200
16	-0.875000	501.500000	7.20000	105 414 100
17	-0.850000	501.40000	7.212000	400.449700
61	-0.825000	501. 70000	7.240000	401-424500
	-0-800000	501.90000	7.339000	402-245100
	-C. 175000	000006 104	7.348000	402-959400
12	00004C4 0-		7.276000	403 5 73 700
23			1.338000	404° 1947CO
24	-0.75000		000001 L	001028 404
25	-0-650006	502 - 70000	1004 TC - T	404 814 101 200 167 200
26	-0.625000	502.60000		402 124 104 104 104 104 104 104 104 104 104 10
27	-0-600000	502-60000		
28	-0.575000	507.50000		104144-004 708-643000
29	-0-55000	502-60000	7.354000	002 213 200
30	-0.525000	503.30000	7-439000	405-524600
31	-0*50000	503.20000	7.452000	405.419900
32	-0 *4 75000	503. 300000	7.416000	405-259000
	-0.450000	503 .20000	7.457000	405-042709
96 1 6	-0* 425000	503.200000	7.448000	404. 7707CD
52	-0*+00000	503. 400000	7.525000	404.441600
	000416-0-	000000 . 002	7.577000	404-053200
	000356 0-	503. 400000 503 - 505000	7.623000	403.602000
00		000005 505	7.661000	403.084200
			1. 174000	402.495300
14		000000-0000	7.824000	401.828100
54	-0.225000	503.200000	00219-1	400-230700
43	- 0* 20000	503,10000	8.111000	399 282400
4	-0.175000	50 3+ 100000	R. 278000	398.220700
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	-0"150000	502.40000	9.45400n	197.031400
17		000001 205	9,578000	395.707709
6.7			0.000000	194. 728200
64	-0.05000	499.50000	8.915000	000009-065
50	-0.025070	600000.494	9.165000	18A. 704300
15	4-0-	498.10000	9.334000	386.438700
25	0 •025000	496.70000	9.437000	393.924503
	0.050030	495.300000	9.508000	181.140100
24	0.015000	494. 00000	000662.6	378.059900
			8.42CODO	374. 456709
57	0.150000		1900547 - H	000872 772
58	0* 200000	479.50000	5 - 966/JCD	101.926 236
	8 8 9 9			
Tichro 76				
r Purce	(DOULLINGO)			

14PUT 74TA

••• -

INITIAL FREQUENCY = 503.20000

PELYNCHIAL	CCEFFICIENTS OF AMPLITUDE	CORRECT ION
	0.27367724250	07 FRECUENCY## 0
	-0.54258140340	C7 FREQUENCY** 1
	0.48350198190	07 FREQUENCY ** 2
	-0.25502903250	07 FREQUENCY## 3
	0.98177773170	06 FREQUENCY** 4
	-0.20882738190	06 FREQUENCY ** 5
	0.34306415900	C5 FREQUENCY** 6
	-0.38604202390	04 FREQUENCY** 7
	0.28477170750	03 FREQUENCY** B
	-0.12435236290	C2 FREQUENCY++ 9
	0.24409951590	00 FREQUENCY##10

۸C.	FREQUENCY	CORRECTED OUTPUT VOLTAGE	NO.	FREQUENCY	COPPECTED CUTPUT VOLTAGE
L	454.CC0CO	9.50446	30	503.30000	7.43292
2	494.50000	9.73034	31	503.20000	7.45200
3	496.30000	9.36842	32	503.30000	7. 40994
4	498.60000	8.96915	33	503.20000	7.45700
5	499.10000	8.72001	34	503.20000	7.48800
6	499.40000	8.05925	35	503-40000	7.51236
7	499.20000	7.91049	36	503.30000	7.57080
9	499.20000	7.48550	37	503.40000	7.61020
9	50C.CCCC0	7.41428	38	503.50000	7.66166
10	50C.1C00C	7.40186	39	503.50000	7.70455
11	500.30000	7.32813	40	503-40000	7.74796
12	5CC.5000C	7.31277	41	503.40000	7.81086
13	500.7000	7.29952	42	503.20000	7.93700
14	501.30000	7.33125	43	503-10000	8.11797
15	501.4COCC	7. 34022	44	503.10000	8.28512
16	501.50000	7.30361	45	502.40000	8.51111
17	501.40000	7.32195	46	502-10000	8.65783
18	501.7000	7. 331 95	47	501.40000	8-80116
19	501.90000	7.41970	48	500.80000	8.99479
20	501.90000	7.42880	49	499.50000	9.19545
21	502.CCOCC	7.34984	50	499.80000	9.50840
22	502.30000	7.40394	51	495.10000	9.74000
23	5C2.6CCOC	7.37528	52	496.70000	9.96142
24	502.60CCC	7. 38633	53	495.30000	19.15200
25	502.70000	7.37814	54	494.00000	9. 96954
26	502.60000	7.36121	55	472.10000	9.22604
27	502.50000	7.40644	56	489.30000	8.97033
25	502.50000	7.38744	57	487.50000	9. 57508
29	502.60000	7.39136	58	479.50000	7.27269

Figure 76 (Continued)

Figure 76 (Continued)

58	15	26	3 .	54	ង	5	5	5	6	4 4 9	5 6		n 4		12	1	6	3	38	37	م :			22			29	28	27	26	25	21	25	: :	20	19	18	5	7		:5	12	=	5	c a	ю.	~ 0		•	La.	~ ·	- •	ň,
0.20000	0.15000	C-1250C	00001-0	0.07500	0.05000	0,02500	-0-0	-0.0750.0			-0-10000	-0.13000		- 6.20000	-0-22500	-3-25000	-0.27500	-0.30000	-0.32500	- C- 350CC	-0-17500	-0-40000	-0-49000				- C. 5500C	-0.57500	-0.60000	-0.62500	-0-65000	-0-67500	-0-70000	-0. 43500	-0.77500	-C-80CCC	- C. 82500	-0-85000	-0-87500	0.0226-0-	- C- 950CC	-0.97500	-1-00000	-1.02500	-1-05000		-1-10000	-1-15000	-1.1750.)	-1.20003	-1.27500	-1.25000	PUT LADE AGE
357.51683	371.10650	374 .5309R	378.04973	380. 5783 A	3A2 -97410	385-16712	147-26377	12406°5405		20117076	303 37163	19441 - 545	1999.45	394 15274	394.99236	395-29171	395 - 28598	555555555555555555555555555555555555555	395. 43334	395.27316	195.11412	100.554 445	104.05080	96860 °C65	202 2022 PE196.9473	342.10080	394-01045	393.85501	394.01194	394 .00747	394.16423	104 - MODAL	10400 JOB	393.07647	392.92937	345*426	392-61017	392.14493	342 - 344973	391.5775	391 . 06054	390 • 75295	390.44565	397-14426			141 - 12462	388-71441	387_96251	334 45765	141.7771	24 : - 2 : 0 : 2 : - 2 :	0.5 M V 2 1 F X P 7 . 1 7 21 5 . F # 0
0.003377	BEEFOO U	0.014422	0-077893	0.136110	0-054895	0-000371	0-147185			0.1636367	0.89836	0.927914	0.947167	961096 0	216696	n. 975847	0.980624	0-084173	0-096846	C1988920	0-041747		916566	0.993873	0.994294	109466	0.994810	0.994932	14646	0.994932	0-954810	107750 0	2 1 HEA6 °C	915566*0	0+942590	0,991654	0.990446	0-988887	0.046071	0.980624	0.975847	216696	96 10 46 .0	0-947163	0.037012		0,753670	0.5212P4	0.25 PO 7 3	0.1473R5	145060 5	31054845 14014 F314 F32, F1	115 1A FRIS 2007
1-417348	1-221651	1_275905	1 247900	1.177.70	1 1 77700	1 103378	4 2 4 4 2 4 1	1.25255	1.756020	1.291490	1.293175	1.305349	1.324516	1.339072	1.355090	1.366501	1. 372259	1, 376761	1 19/217	1-186018 1-1860197	1. 194234 462446 • 1	1.390707	229666	1-404031	1.400000	1.491826	1.405R19	1.406197	1.474369	1-408731	1-407044	115104	B04909"1	1.409831	1.402720	1.40 309 3	1.411567	025417-1 025414-1	1.410/04	1.411435	1.414725	1. 413433	btolly"		50696£°1	1. 571413	1.344233	di Lanç 1	1,10896	1 - 2 - 3 6 7 3 3	50003671	1 22772 1 1 231742	AI DUAIFYDYI 1
0-596.491		0-502717	0.501084	596685 0		RU1 400 10	5441 BD*11	5 7 6 6 6 1	1.056413	1.010334	0. 997J97	0.976224	0.969410	166196*0	0.957365	166556 U	0-951079	110144-0	20111110	0.045303	186246*0	0.941810	11196 0	0.940739	0.940177	0.940059	0.938810	0.938627	0.938878	0.919107	614454 0	56 4044 °O	0.94098	C. 941547	0.942619	0.944096	0.945505	0-0470-0 104444 -0	n. 952345	0.955577	J. 958686	0.961316	771696 0	H111 HA.L.	1.000665	1.024801	1.774397	1.130571	0.492590	757267 U	0- 410074	lates been by	

Figure 76 (Continued)

• ټالا	PEL AVOL TAGE	PELEI-EXPT.	95(5)-200[L	IV(F)-FXPT.	[#{E}_#0vEL
1	-1-250-)-)	14.332031	7.153535	6. 035573	-1.123773
2	-1.22500	14.749371	1.441792	5.974959	-0.203148
3	-1.21000	15.194922	1. 345345	5.747397	-1.611751
4	-1.17500	15.471902	4.949478	5.474527	-1.456019
5	-1.15000	16.363540	21.197124	5.154133	-3.487040
2	-1.1250)	17.947335	43.987061	4.546216	-12.912442
7	-1.10000	20.114254	45.937718	3.724774	-21.818609
+	-1.07500	23.229070	45.993923	4.240447	-27.526802
9	-1.05000	24.633097	44. 553250	4.739485	-30,938861
10	-1.02500	27.265675	43.267634	6.229809	- 32, 994634
11	-1.0000	29.988478	42.032949	9.545909	- 34 - 253790
12	-C.97500	29.927605	41.129942	11.113785	-35,068457
13	- 6.95000	30-020445	47-383484	13.569046	- 35- 61 (61 7
14	-0.92500	29.987554	19-834211	14-563381	-35 996675
15	-0.90000	29-310-78	39, 391244	16.546590	-36 257390
16	-0.87500	29. 300242	39,044916	17,943770	-36.445501
17	-1-85000	27.012641	19, 777304	10.277858	-36 679610
1.4	-0.82500	26.515025	34.577394	10 690017	-36 699056
12	-0-30000	26.037873	38 621861	20 216222	- 30.036030
2	-0.77500	25.208128	38 205270	20 625569	-16 930006
21	-0.75000	20 6240 223	22 104647	20.675739	-36 975070
27	-0.72500	24.040140	33 133667	20.0017129	-36.875970
12	-0.70000	24.041313	334 6 72 0 02	201000420	-30.471055
23	-0.10000	24.097557	30.007130	20. 743460	- 30. 938846
24	-2 45000	24.322304	37.010600	20.882815	- 36.976467
27	-0.62500	24.200137	20+014248	20.906646	-36.993407
27	-0.40000	23.500053	37.974277	20.901340	- 30. 992 /31
21	- 0.67600	23.002703	37.994319	21.073414	-37.000242
20	-0.37300	23.433031	51. 990524	21.080844	-36.989170
29	-0.53000	23.594388	35.015823	21.064119	-36.989929
11	-0.52500	24.911007	38.070252	20.828133	-37.001464
31	-2.47600	24.877074	30.109933	20.880614	-36.980226
32	-0.45000	25.190033	33.170303	20. 77140	-30.937214
33	-0.43500	23+291000	33.242004	20.731606	~ 36. 918440
36	-0.42500	27.034303	30. 394007	21.00080	-30.976575
22	-3.40000	20.449323	33.479990	20.372043	-36.824085
20	-0.37500	26.793081	38.0385/6	20.268513	- 36. 74 3502
30	-0.335000	27+01/243	34. 934110	14-810047	-36.646911
10	-0.32900	28.333044	24.120112	19.776574	-30.512924
	- 0. 30000	29.350222	39.472810	18.550552	- 36- 326702
40	-3.27500	30.021041	37. 916393	1/-851166	-16.063936
	-0.25000	30.932054	49.495052	10.643276	- 35.693745
42	-0.27500	31.723604	41+235425	15.717130	-35.146825
43	-0.20000	- 22 + 74 324 3	42.193134	14.022416	-34.328156
44	-9.17500	53.524845	43.399706	11-263052	-33.053868
*2	-0.15000	34.111341	44.747327	10.026192	-30.992517
40	-0.12500	33.8/8951	45.005749	8,184071	-27.560285
47	- 0. 10000	33.783486	46-003317	6.807996	-21.926463
48	-0.07500	32.945094	41.013399	4.497393	-12.878892
44	-0.05000	53.545454	21-191758	3.901461	-3.481358
50	-0.02500	31.940886	4.846159	1.116747	-1.45595A
51	-0.0	28.410291	1.369167	-0.940185	-0.678044
52	J.02500	27.214937	3.442777	- 1.851697	-0.293551
53	C.05000	25.148275	3.153711	-2.343221	-0.123900
54	J.0750)	22.555714	0.055261	-1.204088	-0.751836
55	C.10000	21.998751	0.020004	0.589827	-0.021603
56	0.12500	21.580521	0.007096	1.302392	-7.739007
57	0.15000	19.983905	3. 002390	0.421803	-0.003773
58	C.20000	25.610658	2.003149	5.281720	-0.070695

.

しろしゃーくろ			145860°C	1,119154	3.915514	12741 C. C	74U716°C	0,013505		0-013194	022210-0	182610.0	0.013744	7.013213	01210-0	0.013149	9.013134	221610-0	0.013112	0.013105	560510°0	460610°0	0-013081	0.013065	0.013084	n. 013085	060610*0	260610.0	960610 0	01510-0	0.013117	121610.0	0*013140	0.013156	0.013176	0.2510-0	0.013273	0.013328	0 -0 13404	0.013511	496510°0	0 014600	9.015256	081000 0	0.078384	0.078205	0.004153	0.00R147	0 JUA159	0, 000306		10/10/* N	
v 2-1 KO 1.	700712°C	0 014752		u. ri Tesa	9.017835	9 • C 1 4 6 1 3	0.018796	145410-0	0.019452	0.019550	1.2010-0	0*019585	0.019546	0,0105834		0.019445	0 °01942 B	0.019416	0.019521	10,010,0	0-010477	212410.0	0.019506	9.019446	0.019471	0.019466	0.019410	0.019385		0.019338	0.019306	. 0,019229	0.019178	11610.0	0.019056	0.018921	0-019763	0.018541	0.018340	0.013004	0-117764	0.017530	0.017312	0.016982	0.016744	0.016523	0.016136	0.01000	612110*0	1 441 TA *A	0.019635	a JUA 11.4 M	
13L1 v~1Y	C. 980645	L CUIPO C	HE6160.(3. 495166	5601996	1.972453	0114°C	0 971957	1.972016	0.972139	0. 972253	9.972350	0.972426	0.912496	0-972607	0.972647	0.972682	0. 972713	0.972738	0.97275	0.972783	0.972792	0.972802	0.972805	0.972810	0.972807	0.972794	06/7/6°0	0-772760	0.972754	0.972733	0.972711	0.972682	0.972647	0.977650	0-972499	0.972425	0.972342	0.912239	0.072037	0.972077	0.977915	0.483777	J. 985261	942131	9.981266	1.980969	1697979 C	0. 980 102 201050	5 0 1 6 6 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.980536	11 × 1.1.1 41.	
¥1-F× µ1.	1.070406	1,112514	1.010215	1.013612	1.004351	C. 997953			0.975241	0.972196	0.969597	0.965419	0.964165	0.951360	0.955937	0.954902	0.953714	0.952024	0.950953	0.05/C78	0.950155	0.949887	0.949035	0.948719	0.948175	0.948528	0.951286	0.951104 0	0.952040	0.952680	0.954213	0-954751	0.956198	0.957807	202424 D	0.962220	0.963486	0.965391	0.048165	1 3 C J C D C D C D C D C D C D C D C D C D	0.971171	9.972916	0.972777	0.974784	0.977749	0. 978627	0*980227	2 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.986807	0.976102		
PCL.VCLTACE	-1.23002	[05727]-	-1-2003	-1.17533	-1.15003	-1.12503		-1-05000	-1.02503	-1-00000	-0.97530	-C*95000	00624-3-	-0.87500	-0.85000	-3.92500	- C. BCOCO	-0.77500	-0*15000	0057.02	-0-67500	- C. 65000	-0.62500	- C. 60000	-0.57500	-0.55000	- U 525CC		-0-45000	-0.42500	10. 40000	-0.37500	-0-35000	00005 0-	-0.27500	- C. 250C0	-0.22500	- C. 20000		-0.12500	-C.1000	-3.97503	- C. 05000	-0.2500	-0.0	C. 02900				U. 150CO	0.20000		
NC.	I	• ~	, ~	t	ŝ	• •	- 4	• •	10	11	12	2:	2:	- - 1	11	F.	2 1	2:	5	32	: *	52	26	27	28	5	2	: 2	: 6	*	35	96	26	5		14	42	; ;	5 4	4	47	48	64	<u>s</u> :	23	22	24			15	58		

Figure 76 (Continued)

Figure 77. YCOR data listing for 5 x 10^{-3} -M NaDS in .05-M Na₂SO₄

SURFACTANT SURFACE VISCOSITY= C.00050C

SURFACE VISCOSITY OF PURE INTERFACE= 0.000010

FRUMKIN EXPONENT= 1.50000

DIFFUSION TERM= 455.00

1/80 = FRUMKIN CONCENTRATION CONSTANT= 0.000250

MAXIMUM SURFACE COVERAGE X R X TEMPERATURE = 13.50000

ELECTRICAL DESORPTION EXPONENT = 12.50000

ELECTROCAPILLARY MAXIMUM IS -0.55000 VCLTS VS. S.C.E.

SURFACTANT CONCENTRATION= 0.0050-M NADS

INPUT DATA FOR MODELED BEHAVIOR : MODIFIED FRUMKIN ISCTHERM

WAVENUMBER = 69.813103 RECIPROCAL CM.

PROBE SEPARATION = 1.45300 CM.

WAVELENGTH C.09000 CM.

INITIAL DAMPING CCEFFICIENT 0.83935 1/CM.

ORIGINAL OUTPUT VOLTAGE 9-1050000C MV-

VISCOSITY OF UPPER PHASE 0.0089400 VISCOSITY OF LOWER PHASE 0.0152700

DENSITY OF UPPER PHASE 0.99700 DENSITY OF LOWER PHASE 13.5340C

MEASUREMENTS MADE AT M/200 NA DECYLSULFONATE+M/20 NA2504 / PURE MERCURY INTERFACE 0.CC50-M NADS IN 0.050-M NA25C4

NA2SU4 / PURE HG INTERFACE; DATA OF G.BIERWAGEN (1-26-68) TRY#2

ANALYSIS OF INTERFACIAL RIPPLE DATA FROM THE POLARIZED M/200 MADS IN 0.050-W

27

. .

Figure 77 (Continued)

NC.

8C.	P 12 4 V 12 T N 15	ARE CURNEY	CHITPUT VELIAGE(MV.)	1 A.M. 1
1	-1.274913	4-17.33 2-137	10.035000	164, 153303
?	-1.250000	45 . 37 . 77	1-3-079000	162, 150000
3	-1.275033	44.9.40.000	11.000000	34 7 . 1 1 2 . 1 1
i 4	-1.201000	4734401011	10.982000	370. 416400
7	-1.175000	472.400.00	10.743000	377. 434701
4	-1,150000	473.100000	10.351000	375. 29" 6 11
7	-1.125120	474.100000	10.007000	370, 74+ 101
1	~1.100000	414.427000	9.442000	332.544633
4	-1.075000	475.104,310	9.446000	385.250202
10	-1,050000	475.100000	9.214000	397.133501
11	-1.025000	475.500000	9.148000	390.121000
12	-1.000000	476.100000	9.134000	390.914000
13	- C. 975000	476.30000	9.138000	102.316401
14	-0.953733	474.000000	9.03000	393,475477
19	-0.925000	471.300000	9.133000	394. 545 207
16	-0.90000	477,50000	9.144000	395.452000
17	-0.975000	471.600000	9.163000	396.195600
18	-0.95 70 70	477.300000	9.202000	396.916700
19	-0.925700	479.00000	9.212000	397.596 309
20	-0.800000	473.400000	9+236000	398.056100
21	-0.7750GC	479.500000	9.241000	398.536100
22	-0.750000	478.70000	9.236000	398.797300
23	-0.725000	475.700000	9.225000	399. 363200
24	- C. 700000	478.700000	9.234000	399.700900
25	-0.675000	478.800000	9-228000	399.982100
26	-0.650000	478.800000	9.196000	400.206700
27	-0.625000	478+ 900000	9.159000	400.373200
29	-0.600000	476.80000	9.064000	400.496504
29	-0.575000	479.300000	9.059000	400.576600
30	-0-550000	478. 900000	9.105000	400 . 413000
31	-0.525030	479.200000	9.088000	400.608300
32	-0.50000	479.900000	9.126000	400.578600
33	-0.475000	478+900000	9-175000	400.515600
34	-9.450000	479.00000	9.238000	400.423000
35	-0.425000	479.300000	9.255000	400.295100
30	-0.400000	479.000000	9.320000	400.123000
37	-0.375000	478.900000	9-326000	399. 890600
30	-0.350000	478.90000	9.327000	399.582500
· · ·	-0.325000	479.10000	9.355000	399.177.000
40	-0.300090	479.00000	9.384000	198.655511
43	-0.275000	478.600000	4.325000	346 •000 500
44	-0.235000	478.400000	9. 362000	197.200600
43	-0.225000	478.000000	9.301000	396.255100
44	-0.200000	477-400000	9.306000	395.173001
45	-0.15000	477. 100000	9,354000	393.976501
40	-0.136000	475 600000	9.143000	192.695300
4 H	-0.120000	475.500000	9.430000	391.363700
40	-0.235000	474.500000	9.226000	390.005300
50	-0.050000	473.50000	9.210000	388.611300
51	-0.025000	472 + 200000	9.133000	147.(1754) 205.237.000
52	-0.0	470 400000	9.133000	185, 126900
51	9.025013	4766400000	9.135000	142.900000
54	0.050000	407.00000	A. 1 4000	579.700411
55	0.075000	465 200000	9.105000	*/5./00/0/
50	0.10000	464.100000	0.435UUN 9.436000	361.599999
57	0.125000	461. 100000	2 016000	3674000000
53	0.150000	455 - 70000	4 1050/0	*F2 000000
	1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C		0.10000.0	2247.000.004

11041 - 111

INITIAL FREQUENCY = 479,80000

PELYNPHIAL	CHEFFICIENTS OF AMPLITUDE	CORRECTI	GN	
	0+27367724250	C7 F4	EQUENCY** 0	
	-n. 5425814C34D	C7 F8	ECUENCY ** 1	
	0.48350193190	C7 FR	EQUENCY** 2	
	-0.25502903250	-07 ER	EQUENCY ## 3	
	0.68177773175	C4 F3	EQUENCY## 4	
	-0.20882738195	05 FR	EQUENCY** 5	
	0.34306415900	05 F3	FCUENCY ## 6	
	-0.38604202390	C4 FR	EQUENCY## 7	
	0.28477170757	0 ? FR	EQUENCY** B	
	-0.12435236290	02 F9	FCIJENCY** 9	
	0.24409951590	CO FR	EQUENCY**10	

NC.	ENE JUENCY	CORRECTED DUTPUT VOLTAGE	NC.	FREQUENCY	CORRECTED OUTPUT VOLTAGE
1	467.00000	12.01758	30	478-80000	9.10500
2	467.8CCOC	11.98482	31	479.20000	9.06000
3	468.60000	11.93150	32	478,90000	9.11892
4	470.40000	11.73549	33	478.90000	9.16789
5	472.40000	11.29666	34	479.00000	9.22378
6	473.00000	10.83277	35	479.00000	9.24075
7	474.00000	10.38994	36	479.00000	9.30565
8	474.4000	9. 97949	37	478.90000	9.31877
9	475,00000	9.73051	38	478.90000	9.31977
10	475.LCCCC	9.48394	39	479-10000	9.33330
11	475.5C00C	9.38650	40	479.00000	9.36955
12	476.00000	9.33550	41	478.60000	9.33955
13	476.90000	9.27400	42	478 40000	9.39112
14	476.CC000	9.28031	43	478,00000	9.35911
ι5	477.00000	9.26180	44	477.40000	9.40780
16	477.5CCCC	9.23701	45	477.10000	9.47859
17	477.60000	9.24896	46	476.90000	9.48205
18	477.80000	9.27394	47	475.50000	9.57324
19	478.CC000	5.26955	48	474-50000	9.54109
20	478.40000	9.26472	49	473.7000C	9.59502
21	47E.5CCCC	9.26266	50	472.50000	9+62436
22	478.70000	9.24306	51	471.40000	9.69113
23	478.70000	9.23205	52	470.40000	9.81520
24	418.70000	9.24106	53	468.60000	9.90677
25	478.80000	9.22900	54	457.20000	9.98767
26	478.80000	9.19600	55	465.70000	9.92852
27	476.8CCCC	9.15900	56	454.10000	9.54910
ŝа	478.80000	5.064CC	57	461.30000	9.02654
54	478.90000	9.05900	58	455.70000	9.86191

Figure 77 (Continued)

.

11.2.5.00 11.2.5.00 12.2.5.00 12.2.5.00 11.1.2.1 12.2.5.00 12.2.5.00 12.2.5.00 11.1.2.1 12.2.5.00 12.2.5.00 12.2.5.00 11.1.2.1 12.2.5.00 12.2.5.00 12.2.5.00 11.1.2.1 12.2.5.00 12.2.5.00 12.2.5.00 11.1.2.5 12.2.5.00 12.2.5.00 12.2.5.00 11.1.2.5 12.2.5.00 12.2.5.00 12.2.5.00 11.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 12.2.5.00 <	-11.2170 17.2170 7.21711 7.21711 7.21711 -11.2170 17.2171 7.21711 7.21711 7.21711 -11.2170 17.21711 7.21711 7.21711 7.21711 -11.2170 17.21711 7.217111 7.217111 7.217111 -11.2170 17.21711 7.217111 7.217111 7.217111 -11.2170 17.21711 7.217111 7.217111 7.217111 -11.2170 17.217111 7.217111 7.217111 7.217111 -11.2170 17.217111 17.217111 7.217111 7.217111 -11.2170 17.217111 17.217111 7.217111 7.217111 -11.2170 17.217111 17.217111 17.217111 7.217111 -11.2170 17.217111 17.217111 17.217111 17.217111 -11.2170 17.217111 17.217111 17.217111 17.217111 -11.2170 17.217111 17.217111 17.217111 17.2171111 -11.2170 17.217111 17.2171111	-1.2560 -1.2560 -1.20099				:] e] n . • .
-1.27597 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11773 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11753 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11753 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11753 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11753 1.2.5759 1.2.5759 1.2.5759 1.2.5759 -1.11753 1.2.57599 1.2.57599 1.2.57		-1.22507				
-1.1797) -1.77401 -7.74401 -7.44404 -7.44404 -1.1797) -1.1797 -7.44004 -7.44004 -7.44004 -1.1797) -1.1797 -7.44004 -7.44004 -7.44004 -1.1797) -1.1797 -7.44004 -7.44004 -7.44004 -1.1797) -1.1797 -7.44004 -7.44004 -7.44004 -1.1797) -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.44004 -1.1797 -1.1797 -7.44004 -7.44004 -7.	-117353 -177535 -177535 -776471 -776471 -117535 -177535 -177535 -776471 -776471 -776471 -117535 -177535 -177535 -777535 -777535 -777535 -117535 -177535 -777535 -777535 -777535 -777535 -117535 -177536 -777535 -777535 -777535 -777535 -117536 -777535 -777535 -777535 -777535 -777535 -117536 -777535 -777535 -777535 -777535 -777535 -117536 -117536 -777535 -777535 -777536 -777536 -117536 -777536 -777536 -777536 -777536 -777536 -117536 -777536 -777536 -777536 -777536 -777536 -117536 -777536 -777536 -777536 -777536 -777536 -117536 -777536 -777536 -777536 -777536 -777536 -117536	-1.17533	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111240.0		
-1.11757 1.0.1214/1 0.11710 0.11710 0.11710 -1.11757 1.0.1214/1 0.11710 0.11710 0.11710 -1.11757 1.0.1214/1 0.11710 0.11710 0.11710 -1.11757 1.0.1214/1 0.11710 0.11710 0.11710 -1.11757 1.0.1214/1 0.11710 0.11710 0.11711 -1.11757 1.0.1214/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.1171/1 0.11711/1 0.11711/1 0.11711/1 -1.11757 10.11711/1 0.11	-1.11753 (2790) -1.1793 (2790) -1.1793 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11753 (2790) (2790) 0.17950 0.17950 -1.11750 (2790) (2790) 0.17950 0.17950 -1.11750 (2790) (-1.17533	142.51	46551.0	[H/444" []	, 506.00
1.157.2) 14.4.5145	1.1777) 14.4 cfree 1.7767 1.7767 1.7767 1.1777) 14.4 cfree 1.7767 1.7767 1.7767 1.1777) 14.4 cfree 1.7767 1.7767 1.7767 1.1777) 14.4 cfree 1.7767 1.77675 1.77675 1.1777 14.1 cfree 1.77675 1.77675 1.77675 1.17767		1 411 . 3 2 5 1 4	1.04455	0.655910	1.1.1.1.1.1
-1.117.17 11.1.4.4703 1.7.46414 1.7.46414 1.7.46444 -1.117.17 11.1.4.4703 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.4.4703 -1.107.01 10.1.1771 11.4.4703 11.4.4703 11.47044 -1.107.01 10.1.1771 11.4.4703 11.47044 11.47044 -1.107.01 10.1.1771 11.47044 11.47044 11.47044 -1.107.01 10.1.1771 11.47044 11.47044 11.47044 -1.107.01 10.1.1771 11.47044 11.47044 11.47044 11.107.01 11	1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.12 1.1.174.12 1.1.117.12 1.1.174.12 1.1.174.14 1.1.174.14 1.1.1174.117 1.1.174.11	-1-15:02	! 36. 5F3F5	7.495732	1,1774a	0 * JE a 140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.1111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.1111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.1111/11 1.111/11 1.111/11 1.111/11 1.111/11 1.11111 1.1111/11 1.1111/11 1.11		60073° 876	J. 756019	7° 144494	311506'1
1.00001 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000000000000000000000000000000	-1.00001 0.041140 0.0411414 0.041141 0.041141		385.22527	3.4560.05	1.776234	0° 347442
-1.10000 910.49900 -0.91000 -0.91000 -0.91000 -1.00000 910.49600 -0.91000 -0.91000 -0.91000 -1.00000 910.4000 -0.9100 -0.91000 -0.91000 -1.00000 910.4000 -0.9100 -0.91000 -0.91000 -1.00000 910.4000 -0.9100 -0.91000 -0.91000 -1.00000 910.4000 -0.91000 -0.91000 -0.91000 -1.00000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.4000 -0.91000 -0.91000 -0.91000 -0.01000 910.40000 -0.91000 -0.91000	-1.000000 91.4771 0.476475 0.476475 0.476475 0.476475 -1.000000 91.4771 0.476475 0.476464 0.476464 0.476464 -1.000000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.00000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.00000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.00000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.00000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.00000 91.4771 0.476464 0.476464 0.476464 0.476464 -1.010000 91.4774 0.476464 0.476464 0.476464 0.476464 -1.010000 91.47644 0.476444 0.476444 0.476444 0.476444 -1.010000 91.47644 0.476444 0.476444 0.476444 0.476444 -1.010000 91.476444 0.476444 0.476444	(005C-1-	190.1504/ 190.34248), 9 0.4306 0 035300	1.193627	026420 C
-1.97500 91.2511 0.49567 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.432547 0.49126 0.432547 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.492567 0.49167 0.492567 0.49167 0.491767		-1-02503		001614 M	142110.0	
-6.975(2) 99.12651(2) -9.97666 -9.97566 -9.97566 -1.975(2) 91.42771 0.91756 -9.97566 -9.97566 -1.975(2) 91.42771 0.91751 -9.97566 -9.97566 -9.97566 -1.975(2) 91.42771 0.91715 -9.97566 -9.97566 -9.97566 -1.975(2) 91.42771 0.997212 0.975766 -9.47976 -9.97697 -1.975(2) 91.42711 0.997212 0.979212 -9.7179 -9.97991 -0.177(2) 91.42711 0.997568 0.4997568 0.497471 0.497471 -0.175(2) 91.42711 0.4997568 0.497471 0.497471 0.497471 -0.175(2) 91.42711 0.497561 0.497471 0.497471 0.497471 -0.175(2) 91.42711 0.497471 0.497471 0.497471 0.497471 -0.175(2) 91.4161 0.497471 0.497471 0.497471 0.497471 -1.175(2) 91.4161 0.497471 0.497471 0.497471 0.491411<		-1.0000	391.80136	0.966547	0.427144	711775°
-1. 8250 91, 475(1) 09619(9) 997825 097825 -1. 8250 91, 475(1) 0978212 997826 097826 -1. 8250 91, 475(1) 0978212 097826 097826 -1. 8250 91, 475(1) 097826 097826 097826 -1. 8750 91, 4751 097826 097836 097836 -1. 8750 91, 4751 097836 097836 097836 -1. 8750 91, 4756 099846 097836 097836 -1. 7550 91, 4756 099846 097836 097836 -1. 7550 91, 4756 099846 0998476 099846 -1. 7550 91, 4756 0999476 0999476 099741 -1. 7550 94, 4475 0997416 0997416 0997416 -1. 7550 94, 4475 0997417 0997416 0997416 -1. 7550 94, 4475 0997417 0997416 0997416 -1. 75500 94, 4474 0997416		-C.575CJ	191.26512	9749A3	n. 926692	r. al 7397
-1. Y5730 199.27771 0.995123 0.97576 0.975776 0.975776 0.975776 0.97577 0.97577 0.97577 0.97577 0.975777 0.975777 0.975777 0.975777 0.975777 0.975777 0.975777 0.975777 0.9757777 0.9757777 0.9757777 0.9757777 0.9757777 0.9757777 0.9757777 <th0.975777< th=""> <th0.975777< th=""> <th0.< td=""><td></td><td>-0-22000</td><td>1552 156</td><td>0.980893</td><td>9.42625</td><td>0.914129</td></th0.<></th0.975777<></th0.975777<>		-0-22000	1552 156	0.980893	9.42625	0.914129
-1.47003 194.4741 0.484751 0.484751 0.48451 0.494533 0.49453 0.49453	1.1.7.2003 392.7003 392.70043 0.1.20043 0.1.20043 0.1.20043 1.1.7.2003 392.70041 392.70041 0.100720 0.100720 0.100704 1.1.7.7003 392.70041 0.100720 0.100720 0.100704 0.100704 1.1.7.7003 392.70041 0.100720 0.100720 0.100704 0.100704 1.1.7.7003 392.70041 0.100720 0.100710 0.100740 0.100740 1.1.7.7003 392.7004 0.100710 0.100710 0.100740 0.100740 1.1.7.7003 392.7001 392.7001 0.100710 0.100740 0.100740 1.1.7.7003 392.7001 392.7001 0.100710 0.100740 0.100740 1.1.7.7003 392.7001 0.100710 0.100710 0.100710 0.100710 1.1.7.7003 392.7001 0.100710 0.100710 0.100710 0.100710 1.1.7.7003 392.7001 0.100710 0.100710 0.100710 0.100710 1.1.7.7003 392.7001 0.100710	-1.92503	393.42771	0.985129	A. 927598	0.902059
		- L. \$3003	394.74262	0,984216	0.020443	C C C U U D O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.19750 991.01 0.197.01 0.197.01 0.197.01 -0.17500 992.01 0.197.01 0.197.01 0.197.01 -0.17500 992.01 0.197.01 0.197.01 0.197.01 -0.17500 992.01 0.197.01 0.197.01 0.197.01 -0.17500 992.01 0.197.01 0.197.01 0.197.01 -0.17500 992.01 0.197.01 0.197.01 0.197.01 -0.15000 992.100 992.100 992.100 0.197.01 0.197.01 -0.15000 992.100 992.100 992.100 992.100 0.197.01 -0.15000 992.100 992.100 992.100 0.197.01 0.197.00 -0.15000 992.100 992.100 0.197.01 0.197.00 0.197.00 -0.15000 992.100 992.100 0.197.01 0.197.00 0.197.00 -0.15000 992.100 997.11 0.197.01 0.197.00 0.197.00 -0.15000 992.100 997.11 0.197.01 0.197.0	0001810-	746445045	0.990500	1.429553	0.498989
	1,7000 994,1705 -0.47700 0.47770 0.47770 0.47770 1,7000 994,1705 0.497561 0.497561 0.497561 0.497591 0.497591 1,7000 994,1705 0.497561 0.497561 0.497591 0.497591 0.497591 1,7000 994,1705 0.497561 0.497591 0.497591 0.497591 1,75000 994,1705 0.497591 0.497591 0.497591 0.497591 1,75000 994,1705 0.497741 0.497741 0.497741 0.497791 1,57000 994,1705 0.497741 0.497741 0.497741 0.497741 1,57000 994,1705 0.497741 0.497741 0.497741 0.497741 1,57000 994,1705 0.497741 0.497741 0.497741 0.497741 1,57000 994,1705 0.497741 0.497741 0.497741 0.497741 1,57000 994,171 0.497741 0.497741 0.497741 0.497741 1,57000 994,171	- C. 8250C	395. CACT5	0137420	190256 -1	1.446407 0.805130
-6.7505 195.47810 0.995268 0.995268 0.995268 0.995268 0.995175 0.997149 0.995175 0.997149	-6.77500 195.26810 0.999568 0.97160 0.999568 0.9789175 -6.77500 195.26413 0.999568 0.999568 0.978175 0.9996401 -6.77500 195.26413 0.999568 0.997165 0.9996401 0.999467 -1.60500 195.20413 0.999566 0.997165 0.497497 0.497494 -1.60500 195.3061 195.3061 0.997165 0.497497 0.497494 -1.60500 195.3061 195.3061 0.997165 0.497497 0.497494 -1.60500 195.3061 195.3061 0.997115 0.497497 0.497491 -1.60500 195.3061 195.3061 0.997497 0.497497 0.497497 -1.47500 195.3061 195.3061 0.997497 0.497497 0.499397 -1.47500 195.3061 195.3061 0.997417 0.499397 0.499397 -1.47500 195.3061 0.997417 0.997417 0.497497 0.499397 -1.47500 195.47477 0.997417 0.997417	CC008.C-	395.71455	0.994503	0.9775	2 0 2 3 6 2 °O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.7500 196.26451 0.90561 0.497512 0.497512 -0.7500 196.26451 0.997413 0.497161 0.497161 -0.7500 196.26451 0.997413 0.497161 0.497161 -0.7500 196.26451 0.997413 0.497161 0.497161 -0.7500 196.26455 0.997413 0.497161 0.497161 -0.7500 196.26455 0.997413 0.497493 0.4971936 0.4971936 -0.5500 196.26455 0.997413 0.997413 0.497493 0.497493 -0.5500 196.26455 0.997413 0.997413 0.497493 0.497493 -0.5500 196.2665 0.997413 0.997413 0.497493 0.497493 -0.5700 196.27015 0.997413 0.997413 0.497493 0.494793 -0.47500 196.2701 0.977413 0.997413 0.4974143 0.4974143 -0.47500 196.2701 0.997413 0.997413 0.4974143 0.4974143 -0.47500 196.2701 <	-C* 7755C	395.87810	0.995268	1.827535	0.893397
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.4500 190.20412 0.45623 0.450114 0.491114	-0.75000	396.2045R	0.995961	r 29293	0.89767A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.47500 396.4750 0.990660 0.497163 0.497163 0.497163 0.497163 0.497164 0.497163 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497164 0.497769	-0.72507	395.20412	0° 456323	r1829413	έἰ ೖμισθ•υ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.45000 396.4665 0.49715		196.20450	0.9956.00	9.829142	0 ° 891 996
$ \begin{array}{c} -0.57500 \\ -0.5750 \\ -0.57500 \\ -0.5750 \\ -0.57500 \\ -0.5750 \\ -0.7757 \\ -0.7775 \\ -0.7775 \\ -0.7757 \\ -0.7750 \\ -0.775 \\ -0.7750 \\ -0.775 \\ -0.7750 \\ -0.775 \\ -0.7750 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ -0.775 \\ $			240, 36 (07 346, 34631	6669660	0.430115	0.890640
-1.6000 96.3066 0.997413 0.497419 0.497476 0.49939 -0.5500 96.2645 0.99749 0.49749 0.49749 0.49939 -0.5500 96.2647 0.99749 0.49379 0.49399 0.49399 -0.5500 96.25467 0.99749 0.49397 0.49399 0.49999 -0.45000 96.29467 0.99749 0.49399 0.49919 0.49919 -0.45000 96.29467 0.99749 0.49399 0.49919 0.49919 -0.45000 96.29467 0.99759 0.99749 0.49919 0.49919 -0.45000 96.29516 0.997661 0.49379 0.49919 0.49919 -0.42500 99.26499 0.498216 0.49749 0.49929 0.49929 -0.27500 99.266718 0.494216 0.497499 0.49929 0.49939 -0.27500 99.49005 0.494212 0.494212 0.49429 0.49939 -0.2500 99.49612 0.494212 0.4942919 0.49939 0.49935 <td>-5.00000 594.500 594.5000 0.597473 0.59</td> <td>- 5- 62500</td> <td>10000 • 040 75 745 75</td> <td>0.99115</td> <td>0.832306</td> <td>0.890164</td>	-5.00000 594.500 594.5000 0.597473 0.59	- 5- 62500	10000 • 040 75 745 75	0.99115	0.832306	0.890164
-0.57500 596.36045 0.997479 0.842816 0.947493 0.947493 0.947493 0.947493 0.947493 0.947760 0.847493 0.947760 0.847413 0.947760 0.847413 0.947760 0.847413 0.947760 0.847413 0.947760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847760 0.847413 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513 0.847513	-0.47550 94.50446 0.497479 0.487379 0.487379 -0.47500 97.6767 0.497469 0.487397 0.487379 -0.47500 94.5617 0.497165 0.4874769 0.487397 -0.47500 94.5617 0.497165 0.497347 0.487379 -0.47500 94.5617 0.497165 0.497347 0.487379 -0.47500 94.57517 0.497347 0.4874761 0.487379 -0.47500 94.57517 0.497346 0.4874761 0.487376 -0.47500 94.57515 0.497346 0.497641 0.4874761 0.4874761 -0.47500 94.57515 0.497561 0.497561 0.4874761 0.4874761 -0.12500 94.57515 0.497561 0.497561 0.4874761 0.4974761 -0.12500 94.57516 0.497561 0.497761 0.497491 0.4974761 -0.12500 94.57516 0.497561 0.497761 0.4974761 0.491495 -0.12500 94.57517 0.497212 0.497261 0.491495 0.491495 -0.12500 94.57517 0.491261<	00009-0-	396.36068	0-997418	067550.0 A77424.0	0 990572
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -0.55007 \\ -0.55007 \\ 36.5677 \\ -0.455007 \\ 36.5677 \\ -0.455007 \\ 36.5777 \\ -0.455007 \\ 36.5777 \\ -0.455007 \\ 36.5777 \\ -0.455007 \\ 36.57577 \\ -0.455007 \\ 396.57577 \\ -0.455007 \\ 396.57577 \\ -0.45007 \\ 396.57577 \\ -0.45007 \\ 396.57577 \\ -0.25500 \\ 396.5757 \\ -0.25500 \\ 396.5757 \\ -0.25500 \\ 396.5757 \\ -0.25500 \\ 396.5757 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.25500 \\ 396.577 \\ -0.27500 \\ 396.577 \\ -0.27500 \\ 396.577 \\ -0.27500 \\ 395.6767 \\ 396.577 \\ -0.27500 \\ 395.6767 \\ 396.577 \\ -0.27500 \\ 395.6767 \\ 395.677 \\ -0.27500 \\ 395.77497 \\ -0.27500 \\ 395.774991 \\ -0.179095 \\ -0.11500 \\ 395.777999 \\ -0.11700 \\ 395.777999 \\ -0.11700 \\ 395.777999 \\ -0.11700 \\ 395.77799 \\ -0.11700 \\ 395.77799 \\ -0.11700 \\ 395.77799 \\ -0.10700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11700 \\ 395.7779 \\ -0.11799 \\ -0.11701 \\ -0.1170$	-0.57500	396.36046	0.997479	0.842836	975989.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- C. 550CC	396.36245	0 • 497494	0.839350	0. 499330
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.4750C -1.47	-1.52500	397.01562	0. 957479	0.942760	0.889978
-0.45000 396.69457 0.99153 0.97153 0.494613 0.990613 -0.45000 396.69457 0.99564 0.823464 0.49613 -0.45000 396.69457 0.99561 0.823405 0.499013 -0.45000 396.69457 0.99561 0.823405 0.499013 -0.45000 396.69457 0.994501 0.823405 0.499013 -0.42500 396.69457 0.994501 0.81961 0.819613 -0.42500 396.6459 0.994501 0.819614 0.819614 -0.42500 396.6449 0.994501 0.819614 0.819614 -0.42500 396.64499 0.994503 0.8116474 0.994503 -0.42500 395.64499 0.994503 0.9116474 0.994605 -0.42500 395.64439 0.994503 0.9116474 0.994605 -0.42000 395.64439 0.994503 0.9116474 0.9016475 -0.42000 395.64439 0.995128 0.99467 0.9116474 -0.42000 395.64617 0.99562 0.9116475 0.9116475 -0.417500 397.4757 0.9116475 0.9116475 0.91197 -0.417500 397.4757 0.911675 0.91177 0.91177	-0.44000 390.64947 0.497131 0.497131 0.494010 -0.44000 390.64947 0.497131 0.494010 0.4900175 -0.44000 396.64957 0.49571 0.497144 0.4900175 -0.44000 396.64957 0.49571 0.497149 0.4900175 -0.44000 396.64957 0.495716 0.497149 0.490175 -0.44000 396.64935 0.497516 0.4971495 0.4971495 -0.427500 396.6493 0.497517 0.4971995 0.497479 -0.227500 396.6439 0.497517 0.497519 0.497479 -0.227500 396.6439 0.497517 0.497519 0.497577 -0.227500 396.64439 0.497517 0.497519 0.497577 -0.227500 396.64439 0.497517 0.49757 0.497577 -0.227500 396.64439 0.497517 0.49757 0.497577 -0.227500 397.77979 0.497577 0.49757 0.497577 -0.227500 397.77979 0.497577 0.497577 0.497577 -0.227500 397.77979 <td< td=""><td></td><td>1954,044 304 304</td><td>0.997418</td><td>0.83879P</td><td>0.88359A</td></td<>		1954,044 304 304	0.997418	0.83879P	0.88359A
-0.4250C 396.69567 0966.80 0824348 0999164 -0.42500 396.53516 0956.80 0823305 0999164 -0.42500 396.53516 0956.80 0823305 099164 -0.42500 396.53516 0956.80 0823305 099164 -0.42500 396.53516 0956.80 095786 087377 -0.42500 396.53516 095764 099517 087377 099173 -0.25500 396.53516 0995517 099517 099517 099157 -0.25500 395.71973 099212 097184 087346 099376 -0.25500 395.71973 0998216 0981246 099746 099746 -0.17500 393.77463 0998216 0911473 0911473 0911473 -0.17500 393.27742 0997123 0911473 0911473 0911473 -0.17500 393.27742 0997123 0911473 0911473 0911473 -0.17500 393.27742 0974687 0911473 0911473 0911473 -0.17500 393.27742 0974677 0911473 0911473 0911473 -0.17500 393.27742 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>-0.45000</td> <td>396.69497</td> <td>0.997163</td> <td>0 - 83063D</td> <td>30108 0</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.45000	396.69497	0.997163	0 - 83063D	30108 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.425CC	396.69567	0.026955	0.829164	0.890418
$ \begin{array}{c} -0.45500 \\ -5.3500 \\ -5.3500 \\ -5.3500 \\ 396.55516 \\ -0.27500 \\ 396.55516 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 396.5481 \\ -0.27500 \\ 397.5742 \\ -0.21500 \\ 397.5742 \\ -0.21500 \\ 397.5742 \\ -0.27500 \\ 397.5742 \\ -0.27500 \\ 397.5742 \\ -0.7717 \\ -0.774177 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774127 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.774170 \\ -0.7772 \\ -0.7772 \\ -0.7772 \\ -0.777 \\ -0.777 \\ -0.777 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.40000	396. 69835	0- 246680	n.82434R	1.80872
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0-37500	396.53512	0. *16323	7.823379	0.891246
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3000 996.7007 0.994503 0.994503 0.919616 0.994503 -0.22560 395.06439 0.999517 0.919616 0.994503 -0.22560 395.06439 0.999517 0.919616 0.994503 -0.22560 395.06439 0.999517 0.999517 0.994503 -0.22560 395.06439 0.999517 0.919666 0.994577 -0.22560 395.06439 0.999517 0.919676 0.999577 -0.22500 395.06439 0.999517 0.999517 0.9196757 0.996577 -0.12500 393.97950 0.9966178 0.996677 0.990577 0.911771 0.9797757 -0.12500 397.27149 0.97577 0.9765777 0.9797977 0.9797977 -0.12500 397.77149 0.975777 0.975777 0.9797977 0.97979777 -0.12500 377.66005 0.975777695 0.979797776677 0.97979767776677 $0.979796777667767677667767676767676767676$		01550.000 92543_405	0.095861	0.823305	0.441995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.27500 396.0448 0.093510 0.47705 0.47705 -0.25001 395.0449 0.99511 0.495212 0.481656 0.484571 -0.25000 395.0449 0.99512 0.497512 0.481656 0.484571 -0.25000 395.0449 0.98616 0.48567 0.484574 0.996576 -0.17500 393.57950 0.986128 0.49756 0.497576 0.497576 -0.17500 393.57950 0.986128 0.49757 0.997568 0.997568 -0.17500 393.57950 395.5742 0.996572 0.497766 0.997766 -0.10500 393.577 0.974793 0.49777 0.977768 0.977768 -0.10500 393.577 0.97557 0.97772 0.97779 0.977795 -0.05001 390.577 0.97560 0.97772 0.97768 0.97768 -0.05000 382.757 0.97756 0.97772 0.97773 0.97173 0.97169 -0.05001 377.65019 0.97772 0.97773 0.97773 0.97769 0.97769 -0.070003 377.6761 0.97773	-0-3000	396.70095	107165 °U	81.622.910 0 81.962.0	0.893241
-0.25500 395.11973 0.9905 m 0.41635 0.49455 -0.22500 395.06439 0.9905 m 0.4905 m 0.416435 0.9065 m -0.22500 395.06439 0.9905 m 0.4905 m 0.416435 0.9065 m -0.22000 395.06439 0.9905 m 0.416435 0.905 m 0.9065 m -0.15500 393.59950 0.9965 m 0.41643 0.9073 -0.15500 393.59950 0.984128 0.414473 0.9074 -0.15500 393.59950 0.984128 0.411473 0.9074 -0.15500 393.59950 0.995477 0.914475 0.91447 -0.15600 397.5742 0.995477 0.91117 0.91747 -0.15600 387.7574 0.995427 0.914475 0.91747 -0.15600 387.7574 0.955467 0.91717 0.97717 -1.05000 387.7574 0.9554015 0.774757 0.9717 -0.05500 317.65377 0.745577 0.74757 0.9717 -0.05500 317.65377 0.745577 0.74757 0.9717 -0.05500 317.65377 0.745777 0.74757 0.9717 -1.0000 317.65377 0.745777 0.74677 0.97197 <	-0.25001 395.71973 0.99212 0.490500 0.499510 0.499510 -0.22500 395.06439 0.490500 0.490500 0.496516 0.89655 -0.21500 393.57950 393.57950 0.98216 0.81655 0.89655 -0.15000 393.57950 0.988216 0.81657 0.91395 0.94457 -0.15000 393.57950 0.988216 0.91395 0.91395 0.91347 -0.15000 393.27147 0.998216 0.81657 0.91395 0.91347 -0.15000 393.27147 0.998717 0.91477 0.91397 0.91347 -0.15000 393.27147 0.996306 0.91477 0.91397 0.91477 0.91397 -0.15000 387.0577 0.95605 0.91577 0.91577 0.91394 0.91758 0.91758 -0.05500 387.15677 0.995005 0.995017 0.91996 0.91947 0.91947 -0.05500 387.15677 0.975610 0.995017 0.91777 0.91758 0.97758 -0.05500 387.75777 0.975610 0.977757 0.977177 0.9	-0.27500	396. 644 88	015150	010416-00 018426	0. 194 150
-0.22560 395.0439 0.4905/n n.876405 n.876475 n.877157 n.911477 n.91177 n.91177 n.91177 <th.91177< th=""> <th.9114757< th=""> <th.91< td=""><td>-0.20000 395.06439 0.9905/m 0.4905/m 0.4905/m 0.4905/m -0.20000 394.06439 0.998518 0.41647 0.90347 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57170 0.974993 0.411978 0.903768 -0.10000 386.1541 0.97562 0.917762 0.91171 0.977489 -0.10000 386.056 0.995763 0.91171 0.977489 -1.0000 386.1541 0.995625 0.977173 0.911978 -0.10000 386.1541 0.995625 0.977187 0.911978 -0.10000 386.1541 0.97563 0.977187 0.977187 -1.00500 376.6500 0.775610 0.779769 0.977187 0.07500 377.68777 0.977187 0.977187 0.977184 0.07500 377.6700 0.775670 0.719787 0.977689 0.07500 377.6700 0.77577 0.977587 0.977587 0.07500 37</td><td>-0.25000</td><td>395.71973</td><td>0. 992212</td><td>0.818056</td><td>2126-68-0</td></th.91<></th.9114757<></th.91177<>	-0.20000 395.06439 0.9905/m 0.4905/m 0.4905/m 0.4905/m -0.20000 394.06439 0.998518 0.41647 0.90347 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57950 0.998518 0.411675 0.903457 -0.15000 393.57950 393.57170 0.974993 0.411978 0.903768 -0.10000 386.1541 0.97562 0.917762 0.91171 0.977489 -0.10000 386.056 0.995763 0.91171 0.977489 -1.0000 386.1541 0.995625 0.977173 0.911978 -0.10000 386.1541 0.995625 0.977187 0.911978 -0.10000 386.1541 0.97563 0.977187 0.977187 -1.00500 376.6500 0.775610 0.779769 0.977187 0.07500 377.68777 0.977187 0.977187 0.977184 0.07500 377.6700 0.775670 0.719787 0.977689 0.07500 377.6700 0.77577 0.977587 0.977587 0.07500 37	-0.25000	395.71973	0. 992212	0.818056	2126-68-0
-0.17500 394.2628 0.988.216 0.416834 0.90157 -0.17500 393.27950 0.988.128 0.988.128 0.91147 0.90137 -0.17500 393.27347 0.985.128 0.981.28 0.91147 0.91147 0.91147 -0.15000 393.27347 0.995.174 0.90137 0.91147 0.91147 0.91147 -0.15000 393.27347 0.964567 0.91147 0.91147 0.91197 -0.15000 393.2734 0.964567 0.91147 0.91197 0.91197 -0.15000 393.27441 0.97493 0.91171 0.917717 0.91771 -0.25500 384.06304 384.5517 0.975107 0.977171 0.977171 -0.07500 384.7574 0.975405 0.776109 0.7761267 0.777167 0.977171 -0.07500 384.3577 0.975405 0.776127 0.7761267 0.777167 0.977167 -0.07500 377.6377 0.7754019 0.7754019 0.7761267 0.77761267 0.7771677 0.977167	-0.17500 394.08678 0.988216 0.811677 0.991.457 -0.17500 393.57950 0.986728 0.986728 0.991.457 -0.17500 393.57950 0.986728 0.986728 0.911.473 0.9774547 -0.12500 393.27742 0.96677 0.967477 0.911.473 0.97717 -0.10000 393.27743 0.966777 0.967477 0.91171 0.911947 -0.10000 384.07637 0.976477 0.974797 0.91171 0.911947 -0.10000 384.07637 0.976477 0.975477 0.91171 0.911947 -0.10000 384.07637 0.975477 0.975477 0.91171 0.91171 -0.0000 384.07637 0.975677 0.975677 0.91171 0.917587 -0.0000 384.07637 0.975677 0.975678 0.971694 -0.0000 372.67047 0.9766019 0.776573 0.776573 0.97158 -0.007500 372.67061 0.971677 0.776573 0.771577 0.97158 0.07500 372.67061 0.97167 0.776573 0.776573 0.97158 0.07500 372.67061 0.97173 0.779757 0.779577 0.7797577 0.17570 372.67061 <td>-0-22500</td> <td>395.06439</td> <td>0* 4905 00</td> <td>n. 870405</td> <td>0.898536</td>	-0-22500	395.06439	0* 4905 00	n. 870405	0.898536
-0-117500 393.273750 0.985128 0.911473 0.9773 -0.15000 397.27372 0.977493 0.911473 0.9773 -0.12500 390.59721 0.974993 0.911473 0.911473 0.97745 -0.10000 387.7747 0.974577 0.9197 -0.05500 387.7770 0.954567 0.9171 0.97745 -0.05500 386.14641 0.954567 0.97745 -0.05500 386.14641 0.954505 0.97747 -0.07745 0.97747 -0.05500 387.777 0.966306 0.777173 0.97745 -0.05500 377.5777 0.74677 0.747577 0.74757 0.07570 0.77567 0.747577 0.747577 0.74757 0.07575 0.9775 0.07575 0.7777 0.747577 0.747577 0.747577 0.07555 0.944306 372.48611 0.73935 0.774577 0.744306 0.77757 0.12500 359.47757 0.741367	-0.11500 393.57950 0.985128 0.881647 0.997765 -0.12500 393.57970 0.97567 0.97776 -0.12500 393.57747 0.965567 0.981677 0.97776 -0.10500 393.57747 0.965567 0.981777 0.97776 -0.10500 393.57747 0.965567 0.981777 0.911978 -0.10500 393.5777 0.95567 0.91177 0.911978 -1.05500 393.47547 0.975697 0.911978 0.911978 -1.05500 393.577 0.975697 0.919947 0.91947 -1.05500 397.5749 0.975697 0.91947 0.91947 -1.05000 397.5749 0.97569 0.977697 0.91947 -1.05000 377.6517 0.97773 0.977697 0.91947 -1.05000 377.65017 0.775617 0.975697 0.975697 -1.05000 377.6777 0.71977 0.977697 0.977697 0.11570 377.6761 0.775617 0.97179 0.9759395 0.11570 377.6761 0.775617 0.977697 0.11570 377.6767 0.71977 0.971797 0.11570 377.6761 0.741977 0.5759395 0.11	-0-20000	394.C8628	n.988216	n.816834	15200000
1.12500 397.5714 0.490843 0.4314273 0.404815 0.404815 0.40731 0.12500 390.59721 0.476567 0.471757 0.407157 0.40731 -0.12500 390.59721 0.57567 0.407157 0.40717 0.40731 -0.12500 386.1563 0.9554277 0.407173 0.40731 0.40731 -0.12500 386.1563 0.9554277 0.4954273 0.407173 0.40731 -1.0500 386.1564 0.955456 0.497173 0.49747 0.497173 0.49747 -1.0500 386.1564 0.456019 0.456019 0.77667 0.49717 0.49717 -1.0500 317.63777 0.456019 0.77667 0.77677 0.49717 0.05500 317.63777 0.745670 0.776677 0.49712 0.4771 0.05500 317.63777 0.745670 0.77677 0.49712 0.47124 0.05501 0.756019 0.77567 0.779757 0.47124 0.47124 0.15577 0.77572	-1.12500 390.5771 0.580891 0.61143 0.5971506 -0.10000 390.5771 0.946567 0.607157 0.911978 -0.10000 383.01637 0.954567 0.607157 0.911978 -0.05500 384.35913 0.95565 0.911978 0.911978 -0.05500 384.35913 0.9566005 0.777787 0.917646 -0.05500 387.75749 0.955015 0.777787 0.917646 -0.05500 377.63777 0.956105 0.777567 0.977646 -0.05500 377.63777 0.956105 0.775577 0.977646 0.07567 0.07766 0.775577 0.97647 0.07567 0.775670 0.775577 0.976476 0.07567 0.775670 0.775677 0.416973 0.07567 0.775670 0.775677 0.416973 0.07567 0.775670 0.776577 0.976476 0.07567 0.775670 0.776577 0.97649 0.07567 0.775670 0.776577 0.97649 0.07567 0.775670 0.776577 0.97649 0.077567 0.775670 0.776577 0.97649 0.077567 0.775670 0.776577 0.97649 0.077567 0.775670 0.775670 0.776577 0.07567 0.775670 0.775670 0.776577 0.07567 0.775670 0.775670 0.776577 0.077567 0.775670 0.75679 0.077567 0.775670 0.757595 0.07567 0.775670 0.775670 0.775670 0.775670 0.775670 0.97569 0.775670 0.775670 0.975795 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.75670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.775670 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.777570 0.77770 0.777570 0.777770 0.777770 0.7777	-0.17500	393.54950	0.985128	0.811675	0.94579
-0.10000 36.37170 0.964567 0.907157 0.91390 -0.10000 36.37170 0.954277 0.91390 0.91397 -0.050500 369.07637 0.954277 0.91397 0.91397 -0.05000 364.15641 0.954277 0.91397 0.91397 -0.05000 364.15641 0.954277 0.97577 0.91397 -0.05000 364.15641 0.954275 0.977173 0.91397 -0.05000 364.15641 0.956005 0.771773 0.97567 -0.05000 375.4317 0.9756015 0.771773 0.967173 -0.07500 377.6377 0.9756015 0.771757 0.967173 0.07550 375.2378 0.9756015 0.771757 0.967173 0.07550 375.2378 0.9756119 0.779757 0.96717 0.07550 375.2378 0.9756119 0.779757 0.46707 0.07550 375.2378 0.9935 0.779757 0.46706 0.115500 357.4777 0.9335 0.779757 0.54149 0.115500 359.47757 0.9335 0.793576 0.5753 0.115600 359.47757 0.9336 0.794576 0.5753	-0.10000 387.37170 7.965557 7.407157 7.411978 -0.10000 386.114641 7.954277 7.4071978 7.4071978 -1.057560 386.14641 0.9157559 7.911978 7.911978 -0.0797589 7.947171 7.975697 7.911978 -0.05900 386.1464 7.9156005 7.775677 7.97579 7.97569 0.0797173 7.97579 7.911978 0.0797173 7.97579 7.975677 7.97579 7.64095 0.179757 7.75677 7.957195 0.179757 7.15070 372.66061 7.1193191 7.45577 7.95577 7.95577 0.179757 7.115070 372.66061 7.1193191 7.45577 7.45577 7.95577 0.179757 7.115070 372.66061 7.1193191 7.45577 7.45577 7.55577 7.95577 0.179757 7.115070 372.66061 7.1193191 7.45577 7.55777 7.55777 7.55777 7.55777 7.55777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.557777 7.5577777 7.557777775777 7.5577777 7.5577777757777 7.5577777 7.55777777757777777577777777	-0-12600	390. 59721	0.976983	0.911423	C. 407706
-U.CT5G0 348.07637 0.0754277 0.40121 0.077123 0.40194 -U.CT5G0 344.36313 0.4954277 0.4917171 0.9786 -U.CT5G0 344.36313 0.495426 0.497173 0.9786 -U.CT5G0 344.36313 0.495605 0.777173 0.9786 -U.CT5G0 347.43631 0.495610 0.77657 0.49717 C.C5500 317.63277 0.49573 0.47775677 0.4957 0.07767 0.775677 0.4677 0.07567 0.776577 0.4678 0.175677 0.76710 0.6758 0.175677 0.4958 0.175677 0.4757 0.175677 0.4757 0.175677 0.4757 0.175677 0.4757 0.175677 0.76419 0.775677 0.4757 0.175677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775677 0.76419 0.775777777 0.76419 0.7757777777777777777777777777777777777	-J.C75C0 J84.07637 0.054277 0.0974277 0.010947 -J.C75C0 J84.07637 0.09757C9 0.0797123 0.010947 -C.C25CC J84.26113 0.0963066 0.797123 0.010642 -C.C25CC J84.25713 0.756005 -J.C55CC J87.656 0.797153 0.797548 -J.C 0.75749 0.756005 J71.652717 0.75670 0.77677 0.79757 0.776570 0.776570 0.797153 J11.0000 357.6772 0.75670 0.776470 -J.15000 357.6777 0.79757 0.641909 -J.15000 357.6777 0.79157 0.641909 -J.15000 357.6777 0.79157 0.641909 -J.15000 357.6777 0.79157 0.641906 -J.15000 357.4775 0.79111 0.7742906 0.475677 0.641909 -J.15000 357.47757 0.79111 0.774290 0.475677 0.57597	-0.10000	07175.586	0.944567		21// 0000000
	-0.0500 386.13641 0.935703 9.901171 0.97743 -0.05500 386.13641 0.995405 0.97173 0.97173 0.97642 -0.05500 387.35749 0.7960306 0.797173 0.797173 0.797173 0.797173 -1.0 387.37749 0.7960305 0.797656 0.797163 0.997573 0.797153 0.797153 0.797153 -1.0 387.3774 0.496015 0.787656 0.787567 0.797573 0.797573 0.797573 0.05500 377.63777 0.715732 0.718757 0.7187567 0.718757 0.497153 0.05500 372.68061 0.718773 0.718757 0.718757 0.499335 0.129500 372.68061 0.73371 0.718409 0.541909 0.129500 359.25877 0.793191 0.7945306 0.551993 0.129500 359.25877 0.79319 0.7945306 0.57593 0.15900 359.25877 0.793191 0.7945306 0.579395 0.15900 359.47757 0.79319 0.7945306 0.579395 0.15900 359.47757 0.79111 0.7945306 0.579395	- J. C75CO	3 8.8. 07637	0.954272	0.99900	0.41444
$-C_{-02500}$ $384,39313$ 0.906306 0.77123 0.97167 0.971667 0.9716677 0.9716677 0.971766777 0.77756777 0.6175677 0.771766777 0.61767777 0.61767777 0.617677777 0.617677777 0.61767777776777 $0.61767777767777677777776777777777777777$	-L. 225C 384.3533 0.96306 0.77123 0.97642 -D.C 387.45749 0.856005 0.787659 0.996757 317.63777 379.45749 0.756015 0.775676 0.997649 0.075C 317.63777 0.795617 0.775676 0.99757 0.075C 377.63777 0.795617 0.775676 0.467767 0.075C 372.48061 0.793191 0.714367 0.414509 0.125C 372.48061 0.733191 0.714367 0.414509 0.125C 359.47757 0.733191 0.7144309 0.445406 0.125C 359.47757 0.79111 0.7744301 0.457378		386.13641	0.935709	9.801171	0.077589
0.0500 330.17149 0.5560 0.787654 0.9697 0.0560 379.87042 0.756019 0.775670 0.49671 0.0550 375.2371 0.156019 0.775670 0.49671 0.0550 375.2371 0.156019 0.775670 0.49671 0.0550 375.2371 0.15501 0.775670 0.49714 0.0550 375.2371 0.15935 0.77975 0.61440 0.12600 357.4777 0.4331 0.73426 0.584576 0.584576 0.15500 359.47757 0.4331 0.734210 0.75752 0.54756 0.15600 359.47757 0.4331 0.43311 0.7345306 0.5752	0.05500 379.87047 0.956005 0.78768 0.995757 0.05500 379.87042 0.756109 0.775670 0.975677 0.05500 377.63777 0.415777 0.45717 0.45737 0.05500 377.63777 0.415777 0.45737 0.45737 0.05500 377.6377 0.415477 0.45677 0.45677 0.12500 372.63661 5.13931 0.43673 0.45777 0.457377 0.12550 369.22577 5.13931 0.45335 0.457366 0.575677 0.12550 359.47757 5.13931 0.454367 0.575697 0.15500 359.47757 0.49111 0.7784307 0.577597	-C.02560	344.36313	906306	0.797123	0° 919644
C.C.5003 J.T.6127 D.T.6377 D.T.6377 D.4971 D.4971 D.4971 D.4971 D.4971 D.4971 D.4971 D.4715670 D.4971 D.471977 D.471977 D.471977 D.4719757 D.41400 D.411257 D.41400 D.41400 D.41100 D.41400 D.414000 D.41400 D.41400	C.C5003 377.0377 0.44573 0.47567 0.47577 0.47573 C.C5003 377.0377 0.47573 0.47577 0.47573 0.47573 0.07502 375.0377 0.77667 0.47577 0.475735 0.416493 0.07502 375.0377 0.77667 0.47577 0.416493 0.12503 375.73716 0.714363 0.714474 0.51190 0.15000 355.4775 0.73301 0.714474 0.54190 0.15000 357.47757 0.73301 0.744306 0.54190 0.15000 359.47757 0.73911 0.744306 0.57592	0.03500	537, 757, 9 570, 677,5	0.456005	0.787658	0.959757
0.075CC 375,737#1 0.154C 375,737#1 0.164C 0.174757 0.164C 0.164C <t< td=""><td>0.075CC 375.737#1 0.7767 0.7767 0.77677 0.77677 0.77677 0.74669 0.125CC 369.22272 9.1901 9.1301 0.78747 0.581900 0.125CC 369.22272 9.1301 0.78456 0.581900 0.15000 359.47757 9.1301 0.44576 0.581900 0.15000 359.47757 9.1301 0.784306 0.57592</td><td>C• C2003</td><td>377.653.77</td><td>0, 10767 30 0, 1057 32</td><td>14141</td><td>0 062306</td></t<>	0.075CC 375.737#1 0.7767 0.7767 0.77677 0.77677 0.77677 0.74669 0.125CC 369.22272 9.1901 9.1301 0.78747 0.581900 0.125CC 369.22272 9.1301 0.78456 0.581900 0.15000 359.47757 9.1301 0.44576 0.581900 0.15000 359.47757 9.1301 0.784306 0.57592	C• C2003	377.653.77	0, 10767 30 0, 1057 32	14141	0 062306
0.12000 372.68061 5. 10935 0.86676 5.8101 0.125CC 368.72577 0. 1391 0.946706 0.5757 0.125CC 359.47757 0. 10911 0.784390 0.5752	0.12000 372.680/1 9. 19936 0.81/61/6 0.54190 0.125CC 369.25472 0. 1331 0.445306 C.555373 0.125CC 369.27757 0. 1331 0.445306 C.555373 0.15000 359.47757 0. 10911 0.784390 0.57599	0.07500	375.23791	10531	0.779757	1 616919
0.125CC 369.22572 0.13391 0.445306 0.5759 0.15000 359.47757 0.1911 0.744390 0.57252	0.125CC 369.22572 0. /3301 0.945306 C.575923 0. /29111 0.784300 0.57250 0. /29111 0.784300 0.57259	0.0001.0	372 .6 8061	3. 10935	0-806574	0.581900
0.15000 357-47757 0.140111 0.744300 0.5725C	0.15000 359.47757 0.100111 0.784390 0.572590	0.12500	364.72477	1. ,3391	7.945306	C. 57523
		1.15000	359.47757	111055 "0	0.794390	0.577590
			(

.

280

чO.	PCL . VOL TAGE	RE(F)-EXPT.	RE(E)-MODEL	1M(F)-EXPT.	[N(F)-MODEL
L	-1.27493	11.436451	0.017563	7.725822	-0.019757
2	-1.25000	11.097143	1.052226	6.341425	-0.050150
3	-1.23500	10.755006	9.163378	5.510420	-0.13942P
4	-1.20000	10.760234	0.579580	5.16P871	-0.412134
5	-1.17500	11.068452	2.595982	5.104353	-1.310851
6	-1.15000	10.805353	15.707355	3.571563	-4.421277
7	-1-12500	10.848086	27.754712	2,401151	-13.471181
9	-1.10000	10.577761	26.317558	-0-213743	-17-553052
9	-1.07500	10.246031	24.07474C	-3-253123	-19-678319
10	-1.05000	9.809830	22.395528	-8.141619	-18,899862
11	-1.02500	9.068995	21.238245	-13.787438	-18,863165
12	-1.00000	8.067573	20.440570	-20,441006	-18-762773
13	-0.97500	8.934195	19.892824	-20,106558	-18.667818
14	- C. 95000	-10.641271	19.470550	-84.203751	-18-554696
15	-0.92500	0.597078	19.195611	-58.079125	-18.494751
15	- C. 90000	2.490246	18.993485	-56.438537	- 18, 441 384
17	-0.87500	-5.398996	19.836749	-83.198374	-19.395254
18	-0.85000	-21.180773	19.721635	********	-19.361839
19	-0.82500	-40.270232	18.633944	********	-18,335499
20	-0.80000	- 28.004365	18.572589	*****	-18.320559
21	-0.77500	-69.460204	18.519980	*******	-18.303599
22	- C. 75COC	-94.533688	18.482901	********	-18,294100
23	-0.72500	********	18.447663	*******	-18.290297
24	-0.70000	******	18.426931	476.841657	-18.275959
25	-0.67500	-66.171584	18.406299	376.556548	-18.268050
26	-0.65000	3.749353	18,391650	253.424631	-18.262963
27	-0.62500	22.422918	19.381971	202.112216	-18.260235
28	-0.60000	43.715926	18.377550	171.891810	-18.260504
29	-0.57500	40.901638	18.366593	158.924077	-18.252433
30	- C. 550CC	31.256797	18.369954	155.918474	- 18. 256608
31	-0.52500	166.607511	18.374259	388.871299	-18.260008
32	-0.50000	34.00 3392	18.379468	191.642112	-18.262398
33	-0.4750C	19.933839	18.383889	208.186550	-18.262129
34	-0.45000	-25.768342	18.395488	304.301508	-18.266750
35	-J-42500	-87.077530	18.410140	385.627057	-18.271836
36	-0.40000	*****	18.432700	386.519487	-18.281637
37	-0.37500	********	18.451513	306.149753	-18,284080
14	-0.35000	*****	18.486758	*******	-18,297882
39	-0.32500	-35.701709	19.531474	*******	-18.314935
40	-J.30000	-18.902191	18.584216	-90.253391	-18.331896
41	-0.27500	-16.845676	18.645616	-91.825522	-18.346815
42	-0.25000	-7.600322	18.733363	-63.932140	-18.373139
45	-0.22500	-1-988546	18.844615	- 54. 109376	-18.402770
45	-0.17500	-2.861067	18.991503	-50-277089	-18.439511
47	-0.17500	1.628853	19.200615	-34.464435	-18.496615
40	-0.15000	5.897323	19,488836	-22.778669	-18.571365
48	-3.12500	-2 401534	19.003501	-31,343959	-18.642186
40	-0.10000	-2 071734	20.408788	- 34-014655	-18.735810
50	-0.05000	-10 127616	21.198809	-35.705002	-18.831871
51	-0.02500	-10.12/014	22. 330420	-43.129039	-14.857431
52	-0.0	- 3. 611209	23.7970/U 26 333677	- 41.49/011	-18.626997
51	3-02500	- 3. 0112-77	20.222411	-21.194580	-17.512469
54	0-05000	4.027371	21.099780 15 679049	-19.272561	-13.456561
55	0-07500	8 413750	2 596204	-11.792407	-4.428012
56	0.10000	10.377560	C. 794344	-1 41 05 94	-1.598627
57	6.12500	11.257048	0. 270210	-1 443133 -1 943133	-0.13051/
59	C-15000	3, 147202	0.051600	-11 110004	-0.040520
		28 KT 14 JL	0.031003	-134399091	**1*1***220

Figure 77 (Continued)

.

.

	-1 20220	1 22.04.1	0.001.15/		• • • • • •
	-1.20403	1	1. 09[1.4	3. 000521	7. 114745
ר	-1.17500	1.0596	1.743160	0.009897	C. 33P745
2	-1.15000	1.000-00-5	C. 995773	0.010310	0.012651
7	-1.12500).997494	1.75425	C.010721	7. 71 47 41
9	-1.10000	0.991805	3.976150	יין וווטי ט	0.017754
4	-1.07500	6.537391	0.975492	0.011368	0,013474
19	-1.05000	0.982-73	0.975825	0.011621	0. 113796
11	-1.02500	0.979627	0.977097	0.011723	0 013170
12	-1-0.1000	0.97718-	1 977310	0 011776	2 212074
13	-0.97500	0 677174	0.077441	0.0110/0	0.012015
14	-0.05000	0.07050/	0.077(0)	0.011842	0.013/15
1.4	-0.9300-7	0.910304	9. 477601	0.011835	0.012956
12	-0.92500	J . 47 184 3	0.977687	9.011854	0.012921
10	-1.90000	0-972055	0+977753	0.011881	0.012994
17	-0.87500	0.970666	0.977811	0.011269	0.012470
18	-0.85000	0.969701	0.977858	0.011842	0.012450
19	- C. 825CC	0.969072	0.977895	0.011846	0.012935
20	-0.80000	C.969354	0.977923	0.011851	7.012824
21	-0.77500	0.963591	0.977950	0.011854	0,012813
22	- C. 75000	C. 963305	0.977971	0.011874	0.012804
23	-0.72500	0.967394	0.977991	0.011886	0.012795
24	-C. 70000	0.966576	0.978006	0 011977	0 012790
25	-0-67500	0.066330	0 07801 0	0.011901	0.012784
26	-0.65000	0 965758	0.979030	0.011025	0.012784
27	-0.67500	0.0(5354	0.979030	0.011925	1.012774
29	-9.60000	0.045050	0.978037	0.011465	0.012776
20	-0.00000	0.905059	0.975042	9.012067	0.012774
29	-0.57500	0.964866	0.978048	0.012073	0.012772
30	-0.55000	0.964779	0.978047	0.012023	0.012772
31	-0.52500	0.966403	0.978044	0.012072	0.012774
32	- C. 500CC	0.965264	0.978043	0.012008	0.012773
33	-0.475CC	0.965416	0.978040	0.011955	0.012775
34	-0.45000	0.966043	0.978034	0.011895	9.012777
35	-0.42500	0.966352	0.978027	0.011877	0.012781
36	-0.40000	0.966767	0.978015	0.011808	0.012795
37	-0.37500	0.966925	0.978006	0.011794	0-012790
38	-C.350CO	0.967671	0.977987	0.011793	0.012757
37	-3.32500	0.969463	0-977962	0.011779	0.012807
40	-0.30000	0.970325	1.977934	0.011760	0 013910
41	-0.27500	0.970301	0.977903	0-011772	0 012022
42	-0.25000	0.971442	0.977859	0 011718	0.013050
43	-0.22500	0 972132	0 077807	0.011710	0.012071
44	-9-20000	6.972349	0 977745	0.011700	0.012871
45	-0.17500	0 974076	0.077442	0.011/00	0.012047
46	-0.15000	0.07//16	9.977662	0.011626	9.012931
10		0.970433	1.9//559	0.011623	0.012974
41	~0.12500	0.474013	5.977448	0.011528	1.013020
41	-0.10000	3.413244	0.977249	0.011562	0.013092
49	-0.07500	6.973494	0.977104	0.011516	0.013157
50	-1.05000	0.772324	0.976857	0.011476	0.013242
21	-0.02500	0.972286	0.976543	0.011418	0+013452
52	-0.0	0.974305	0.976214	0.011282	1.013728
53	3.02500	0.976272	7.975465	0.011191	0.914755
54	C.05000	0.979510	0.985751	0.011111	7.713643
55	0.07500	0.984763	0.781168	0.011169	1.039796
54	0.10000	0.989467	7.991340	0.011553	0.008295
57	J.12500	0.989699	1.931901	0.012109	2.138207
54	0.15000	7.977956	7.987759	9-011236	0.008102
			·• · · · · · · · ·	24 · · · · ·	1

Y 1-MITTEL

0.990677

1.950773

7.947927

Y2-ExPT.

1.006247

0.039314

1.000354

v>- v-rel

2. 222214

1. 2291 43

1.11.121

•

Figure 77 (Continued)

NC.

ι

5

3

PCL.VCLIAJE

-1-27499

-1.2500)

<1-F≤PT.

1.072142

1.022362 1.014297 1.003674 1.005863